Skip to main content

The Phototrophic Consortium “Chlorochromatium aggregatum” – A Model for Bacterial Heterologous Multicellularity

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 675))

Abstract

Phototrophic consortia currently represent the most highly developed interspecific association between prokaryotes and consist of green sulfur bacterial epibionts which surround a central, motile, chemotrophic bacterium. Several independent experimental findings indicate that a rapid signal transfer occurs between the epibionts and the central bacterium. First, the cell division of the partner bacteria occurs in a highly coordinated fashion. Second, consortia accumulate scotophobotactically in the light, whereby the central bacterium confers motility to the consortium and the epibionts act as light sensors. Third, the organic carbon uptake of the central bacterium seems to be controlled by the epibiont. A decade ago, a laboratory culture of the phototrophic consortium “Chlorochromatium aggregatum” could be established and maintained. Using “C. aggregatum,” recent genomic, transcriptomic, and proteomic studies have started to unravel the molecular basis of prokaryotic heterologous multicellularity in this model system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bayer A (2007) Neue Ansätze zur Analyse der bakteriellen Interaktionen in phototrophen Konsortien. Diplomarbeit University of Munich, Munich, 104 pp.

    Google Scholar 

  • Buder J (1914) Chloronium mirabile. Berichte deutsche botanische Gesellschaft 31:80–97

    Google Scholar 

  • Caldwell DE, Tiedje JM (1975) A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes. Can J Microbiol 21:362–376

    Article  PubMed  CAS  Google Scholar 

  • Croome RL, Tyler PA (1984) Microbial microstratification and crepuscular photosynthesis in meromictic Tasmanian lakes. Verh Int Verein Limnol 22:1216–1223

    CAS  Google Scholar 

  • Czeczuga B, Gradski F (1972) Relationship between extracellular and cellular production in the sulphuric green bacterium Chlorobium limicola Nads. as compared to primary production of phytoplankton. Hydrobiologia 42:85–95

    Article  Google Scholar 

  • De Bok FA, Plugge CM, Stams AJ (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375

    Article  PubMed  Google Scholar 

  • Eichler B, Pfennig N (1990) Seasonal development of anoxygenic phototrophic bacteria in a holomictic drumlin lake (Schleinsee, F.R.G.). Arch Hydrobiol 119:369–392

    Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514

    Article  PubMed  CAS  Google Scholar 

  • Fröstl J, Overmann J (1998) Physiology and tactic response of “Chlorochromatium aggregatum”. Arch Microbiol 169:129–135

    Article  PubMed  Google Scholar 

  • Fröstl JM, Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch Microbiol 174:50–58

    Article  PubMed  Google Scholar 

  • Gasol JM, Jürgens K, Massana R, Calderón-Paz JI, Pedrós-Alió C (1995) Mass development of Daphnia pulex in a sulfide-rich pond (Lake Cisó). Arch Hydrobiol 132:279–296

    Google Scholar 

  • Glaeser J, Overmann J (2003a) Characterization and in situ carbon metabolism of phototrophic consortia. Appl Environ Microbiol 69:3739–3750

    Article  PubMed  CAS  Google Scholar 

  • Glaeser J, Overmann J (2003b) The significance of organic carbon compounds for in situ metabolism and chemotaxis of phototrophic consortia. Environ Microbiol 5:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Glaeser J, Overmann J (2004) Biogeography, evolution and diversity of the epibionts in phototrophic consortia. Appl Environ Microbiol 70:4821–4830

    Article  PubMed  CAS  Google Scholar 

  • Gorlenko VM (1988) Ecological niches of green sulfur bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum, New York, pp 257–267

    Chapter  Google Scholar 

  • Kanzler B, Pfannes KR, Vogl K, Overmann J (2005) Molecular characterization of the non-photosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Environ Microbiol 71:7434–7441

    Article  PubMed  CAS  Google Scholar 

  • Lauterborn R (1906) Zur Kenntnis der sapropelischen Flora. Allg Bot 2:196–197

    Google Scholar 

  • Overmann J (2001) Phototrophic consortia: a tight cooperation between non-related eubacteria. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer, Dordrecht, pp 239–255

    Google Scholar 

  • Overmann J (2006) The symbiosis between nonrelated bacteria in phototrophic consortia. In: Overmann J (ed) Molecular basis of symbiosis. Progress in molecular subcellular biology, Chapter II. Springer, Berlin, pp 21–37

    Google Scholar 

  • Overmann J, Lehmann S, Pfennig N (1991) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (Green sulfur bacteria). Arch Microbiol 157:29–37

    Article  CAS  Google Scholar 

  • Overmann J, Pfennig N (1989) Pelodictyon phaeoclathratiformesp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152:401–406

    Article  CAS  Google Scholar 

  • Overmann J, Tilzer MM (1989) Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake (Mittlerer Buchensee, West Germany). Aquat Sci 51:261–278

    Article  Google Scholar 

  • Overmann J, Tuschak C, Fröstl J, Sass H (1998) The ecological niche of the consortium “Pelochromatium roseum”. Arch Microbiol 169:120–128

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N (1980) Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: a review. In: Gottschalk G, Pfennig N, Werner H (eds) Anaerobes and anaerobic infections. Fischer, Stuttgart, New York, pp 127–131

    Google Scholar 

  • Pfannes K (2007) Characterization of the symbiotic bacterial partners in phototrophic consortia. Dissertation, University of Munich, 180p.

    Google Scholar 

  • Pfannes KR, Vogl K, Overmann J (2007) Heterotrophic symbionts of phototrophic consortia: members of a novel diverse cluster of Betaproteobacteria characterised by a tandem rrn operon structure. Environ Microbiol 9:2782–2794

    Article  PubMed  CAS  Google Scholar 

  • Schink B (1991) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin, pp 276–299

    Google Scholar 

  • Schink B (2002) Synergistic interactions in the microbial world. Ant van Leeuwenhoek 81:257–261

    Article  CAS  Google Scholar 

  • Tuschak C, Glaeser J, Overmann J (1999) Specific detection of green sulfur bacteria by in situ hybridization with a fluorescently labeled oligonucleotide probe. Arch Microbiol 171:265–272

    Article  PubMed  CAS  Google Scholar 

  • Vogl K, Glaeser J, Pfannes KR et al (2006) Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 185:363–372

    Article  PubMed  CAS  Google Scholar 

  • Vogl K, Wenter R, Dressen M, et al (2008) Identification and analysis of four candidate symbiosis genes from ‘Chlorochromatium aggregatum’, a highly developed bacterial symbiosis. Environ Microbiol 10:2842–2856

    Article  PubMed  CAS  Google Scholar 

  • Wanner G, Vogl K, Overmann J (2008) Ultrastructural characterization of the prokaryotic symbiosis in ‘Chlorochromatium aggregatum’. J Bacteriol 190:3721–3730

    Article  PubMed  CAS  Google Scholar 

  • Wenter R, Hütz K, Dibbern D, Reisinger V, Li T, Plöscher M, Eichacker L, Eddie B, Hanson T, Bryant D, Overmann J (2010) Expression-based identification of genetic determinants of the bacterial symbiosis in ‘Chlorochromatium aggregatum’. Environ Microbiol (in press; Ms. No. EMI-2009-0895)

    Google Scholar 

  • Wenter R, Wanner G, Schüler D, Overmann J (2009) Ultrastructure, phylogeny and tactic behaviour of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ Microbiol 11:1493–1505

    Article  PubMed  Google Scholar 

  • Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50:513–552

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Several motivated students have participated in our research on phototrophic consortia: Jürgen Fröstl, Jens Glaeser, Kajetan Vogl, Martina Schlickenrieder, Martina Müller, Birgit Kanzler, Kristina Pfannes, Katharina Hütz, Anne Bayer, Dörte Dibbern, and Johannes Müller. Their contributions were decisive for the success of the project. Support by the Deutsche Forschungsgemeinschaft (grants Ov20/3-1, Ov20/3-2, Ov20/3-3, Ov20/10-1, Ov20/10-2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Overmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Overmann, J. (2010). The Phototrophic Consortium “Chlorochromatium aggregatum” – A Model for Bacterial Heterologous Multicellularity. In: Hallenbeck, P. (eds) Recent Advances in Phototrophic Prokaryotes. Advances in Experimental Medicine and Biology, vol 675. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1528-3_2

Download citation

Publish with us

Policies and ethics