Abbott, E. A. (1884). Flatland: a romance of many dimensions. London: Seeley.
Abelson, H., & diSessa, A. (1980). Turtle geometry: the computer as a medium for exploring mathematics. Cambridge, MA: MIT Press.
Accascina, G., & Rogora, E. (2006). Using 3D diagrams for teaching geometry, International Journal for Technology in Mathematics Education, 13(1), 11–22.
Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments, ZDM: the International Journal on Mathematics Education, 34(3), 66–72.
CrossRefBattista, M. T. (2008). Development of the Shape Makers geometry microworld: design principles and research. In G. Blume & M. K. Heid (Eds.) Research on Technology in the Learning and Teaching of Mathematics, Volume 2: Cases and Perspectives (pp. 131–156). Greenwich, CT: Information Age.
Bessot, A. (1996). Geometry and work: examples from the building industry. In A. Bessott & J. Ridgeway (Eds.) Education for Mathematics in the Workplace (pp. 143–158). Dordrecht: Kluwer.
Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere, Bulletin of the American Mathematical Society, 11, 85–141.
CrossRefButler, D. (2006). Migrating from 2D to 3D in ‘Autograph’, Mathematics Teaching (Incorporating Micromath), 197, 23–26.
Christou, C., Jones, K., Mousoulides, N., & Pittalis, M. (2006). Developing the 3DMath dynamic geometry software: theoretical perspectives on design, International Journal of Technology in Mathematics Education, 13(4), 168–174.
Clements, D. H., Sarama, J., Yelland, N. J., & Glass, B. (2008). Learning and teaching geometry with computers in the elementary and middle school. In M. K. Heid & G. Blume (Eds.) Research on Technology in the Learning and Teaching of Mathematic, Volume 1: Research Syntheses (pp. 109–154). Greenwich, CT: Information Age.
Garry, T. (1997). Geometer’s sketchpad in the classroom. In J. R. King & D. Schattschneider (Eds.) Geometry Turned On!: Dynamic Software in Learning, Teaching, and Research (pp. 55–62). Washington, DC: The Mathematical Association of America.
Gawlick, T. (2004). Towards a theory of visualization by dynamic geometry software. Paper presented at the 10th International Congress on Mathematical Education (ICME-10), Copenhagen, Denmark, 4–11 July 2004.
Goldenberg, E. P., & Cuoco, A. (1998). What is dynamic geometry? In R. Lehrer & D. Chazan (Eds.), Designing Learning Environments for Developing Understanding of Geometry and Space. Hilldale, NJ: LEA.
Goldenberg, E. P., Scher, D., & Feurzeig, N. (2008). What lies behind dynamic interactive geometry software? In G. Blume & M. K. Heid (Eds.) Research on Technology in the Learning and Teaching of Mathematic, Volume 2: Cases and Perspectives (pp. 53–87). Greenwich, CT: Information Age.
Gray, J. (1989). Ideas of space: Euclidean, non-Euclidean and relativistic. Oxford: Clarendon.
Harel, I. (Ed.) (1991). Children designers: interdisciplinary constructions for learning and knowing mathematics in a computer-rich school. Norwood, NJ: Ablex Publishing.
Hollebrands, K., Laborde, C., & Strasser, R. (2008). Technology and the learning of geometry at the secondary level. In M. K. Heid & G. Blume (Eds.), Research on Technology in the Learning and Teaching of Mathematic, Volume 1: Research Syntheses (pp. 155–205). Greenwich, CT: Information Age.
Howson, A. G., & Kahane, J.-P. (Eds.) (1986). The influence of computers and informatics on mathematics and its teaching. Cambridge: Cambridge University Press.
Hoyles, C., Noss, R., & Adamson, R. (2002). Rethinking the microworld idea, Journal of Educational Computing Research, 27(1–2), 29–53.
CrossRefJones, K. (1999). Student interpretations of a dynamic geometry environment. In I. Schwank (Ed.), European Research in Mathematics Education (pp. 245–258). Osnabrueck: Forschungsinstitut für Mathematikdidaktik.
Jones, K. (2009). Linking geometry and algebra in the school mathematics curriculum. In Z. Usiskin (Ed.), Future Curricular Trends in School Algebra and Geometry. Greenwich, CT: Information Age.
Kaufmann, H., Schmalstieg, D., & Wagner, M. (2000). Construct3D: a virtual reality application for mathematics and geometry education. Education and Information Technologies, 5(4), 263–276.
CrossRefKreyzig, E. (1991). Differential geometry. New York: Dover.
Laborde, C. (1995). Designing tasks for learning geometry in a computer-based environment. In L. Burton & B. Jaworski (Eds.), Technology in Mathematics Teaching: A Bridge Between Teaching and Learning (pp. 35–68). London: Chartwell-Bratt.
Laborde, C. (1998). Visual phenomena in the teaching/learning of geometry in a computer-based environment. In C. Mammana & V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 121–128). Dordrecht: Kluwer.
Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-Geometry, International Journal of Computers for Mathematical Learning, 6(3), 283–317.
CrossRefLaborde, C., & Laborde, J.-M. (2008). The development of a dynamical geometry environment: Cabri-géomètre. In G. Blume & M. K. Heid (Eds.), Research on Technology in the Learning and Teaching of Mathematic, Volume 2: Cases and Perspectives (pp. 31–52). Greenwich, CT: Information Age.
Laborde, C., Kynigos, C., Hollebrands, K., & Strasser, R. (2006). Teaching and learning geometry with technology. In A. Gutiérrez & P. Boero (Eds.), Handbook of Research on the Psychology of Mathematics Education: Past, Present and Future (pp. 275–304). Rotterdam: Sense Publishers.
Mackrell, K. (2008). Cabri 3D: an environment for creative mathematical design. In P. Liljedahl (Ed.), Canadian Mathematics Education Study Group Proceedings 2007 Annual Meeting. Frederickton: University of Frederickton.
Mandelbrot, B. (1975). Les Objets Fractals: forme, hasard et dimension. Paris: Flammarion.
Mandelbrot, B. (1980). Fractal aspects of the iteration of z → λ z (1−z) for complex λ and z, Annals of the New York Academy of Sciences, 357, 249–259.
CrossRefMoustakas, K., Nikolakis, G., Tzovaras, D., & Strintzis, M. G. (2005). A geometry education haptic VR application based on a new virtual hand representation. In Virtual Reality 2005 Proceedings IEEE, Bonn, Germany, March 2005.
Norman, D. A., & Draper, S. W. (1986). User centered system design: new perspectives on the human–computer interaction. Norwood, NJ: Ablex Publishing.
Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York: Basic Books.
Papert, S. (1991). In I. Harel & S. Papert (Eds.) Constructionism: research reports and essays 1985–1990. Norwood, NJ: Ablex Publishing.
Scher, D. (2000). Lifting the curtain: the evolution of the geometer’s sketchpad, The Mathematics Educator, 10(2), 42–48.
Stevenson, I. (2000). Modelling hyperbolic space: designing a computational context for learning non-Euclidean geometry, International Journal of Computers for Mathematical Learning, 5(2), 143–167.
CrossRefStevenson, I., & Noss, R. (1999). Supporting the evolution of mathematical meanings: the case of non-Euclidean geometry, International Journal of Computers for Mathematical Learning, 3(3), 229–254.
CrossRefVan den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (Eds.). (2006). Educational design research. London: Routledge.