Skip to main content

Exactly Solved Models

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 775))

This chapter deals with the exact enumeration of certain classes of (self-avoiding) polygons and polyominoes. We restrict our attention to the square lattice. As the interior of a polygon is a polyomino, we often consider polygons as special poly-ominoes. The usual enumeration parameters are the area (the number of cells) and the perimeter (the length of the border). The perimeter is always even, and often refined into the horizontal and vertical perimeters (number of horizontal/vertical steps in the border). Given a class C of polyominoes, the objective is to determine the following complete generating function of C:

$$C\left( {x,y,q} \right) = \sum\limits_{P \in d} {x^{hp\left( P \right)/2_y vp\left( P \right)/2_q a\left( P \right)},} $$

where hp(P), vp(P) and a(P) respectively denote the horizontal perimeter, the vertical perimeter and the area of P. This means that the coefficient c(m,n,k) of x m y n q k in the series C(x,y,q) is the number of polyominoes in the class C having horizontal perimeter 2m, vertical perimeter 2n and area k. Several specializations of C(x,y,q) may be of interest, such as the perimeter generating function C(t,t,1), its anisotropic version C(x,y,1), or the area generating function C(1,1,q). From such exact results, one can usually derive many of the asymptotic properties of the poly-ominoes of C : for instance the asymptotic number of polyominoes of perimeter n, or the (asymptotic) average area of these polyominoes, or even the limiting distribution of this area, as n tends to infinity (see Chapter 11). The techniques that are used to derive asymptotic results from exact ones are often based on complex analysis. A remarkable survey of these techniques is provided by Flajolet and Sedgewick's book [33].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. E. Alm and S. Janson. Random self-avoiding walks on one-dimensional lattices. Comm. Statist. Stochastic Models, 6(2):169–212, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. E. Andrews. The theory of partitions. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2.

    Google Scholar 

  3. C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, and D. Gouyou-Beauchamps. Generating functions for generating trees. Discrete Math., 246(1–3):29–55, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Banderier and P. Flajolet. Basic analytic combinatorics of directed lattice paths. Theoret. Comput. Sci., 281(1–2):37–80, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Barequet, M. Moffie, A. Ribo, and G. Rote. Counting polyominoes on twisted cylinders. Integers, 6:A22, 37 pp. (electronic), 2006.

    MathSciNet  Google Scholar 

  6. E. A. Bender. Convex n-ominoes. Discrete Math., 8:219–226, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Bétréma and J.-G. Penaud. Modèles avec particules dures, animaux dirigés et séries en variables partiellement commutatives. ArXiv:math.CO/0106210.

    Google Scholar 

  8. M. Bousquet-Mélou. Rapport scientifique d'habilitation. Report 1154-96, LaBRI, Universite Bordeaux 1, http://www.labri.fr/perso/lepine/Rapports_internes.

  9. M. Bousquet-Mélou. Codage des polyominos convexes et equations pour l'énumération suiv-ant l'aire. Discrete Appl. Math., 48(1):21–43, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Bousquet-Mélou. A method for the enumeration of various classes of column-convex polygons. Discrete Math., 154(1-3): 1–25, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Bousquet-Melou. New enumerative results on two-dimensional directed animals. Discrete Math, 180(1–3):73–106, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Bousquet-Melou. Rational and algebraic series in combinatorial enumeration. In Proceedings of the International Congress of Mathematicians, pages 789–826, Madrid, 2006. European Mathematical Society Publishing House.

    Google Scholar 

  13. M. Bousquet-Melou and A. J. Guttmann. Enumeration of three-dimensional convex polygons. Ann. Comb., 1(1):27–53, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Bousquet-Melou and M. Petkovšek. Linear recurrences with constant coefficients: the multivariate case. Discrete Math., 225(1–3):51–75, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Bousquet-Mélou and A. Rechnitzer. Lattice animals and heaps of dimers. Discrete Math., 258(1–3):235–274, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Bousquet-Mélou and X. G. Viennot. Empilements de segments et q-énumération de polyominos convexes dirigés. J. Combin. Theory Ser A, 60(2): 196–224, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Brak and A. J. Guttmann. Exact solution of the staircase and row-convex polygon perimeter and area generating function. J. PhysA: Math. Gen, 23(20):4581–4588, 1990.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. R. Brak, A. L. Owczarek, and T. Prellberg. Exact scaling behavior of partially convex vesicles. J. Stat. Phys., 76(5/6): 1101–1128, 1994.

    Article  MATH  ADS  Google Scholar 

  19. A. de Mier and M. Noy. A solution to the tennis ball problem. Theoret. Comput. Sci., 346(2– 3):254–264, 2005.

    MATH  MathSciNet  Google Scholar 

  20. A. Del Lungo, M. Mirolli, R. Pinzani, and S. Rinaldi. A bijection for directed-convex polyominoes. In Discrete models: Combinatorics, Computation, and Geometry (Paris, 2001), Discrete Math. Theor Comput. Sci. Proc, pages 133–144 (electronic). Maison Inform. Math. Discr, Paris, 2001.

    Google Scholar 

  21. M. Delest and S. Dulucq. Enumeration of directed column-convex animals with given perimeter and area. CroaticaChemicaActa, 66(1):59–80, 1993.

    Google Scholar 

  22. M.-P. Delest. Generating functions for column-convex polyominoes. J. Combin. Theory Ser. A, 48(1): 12–31, 1988.

    Article  MathSciNet  Google Scholar 

  23. M.-P. Delest and G. Viennot. Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci., 34(1–2): 169–206, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Dhar. Equivalence of the two-dimensional directed-site animal problem to Baxter's hard square lattice gas model. Phys. Rev. Lett, 49:959–962, 1982.

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Dhar. Exact solution of a directed-site animals-enumeration problem in three dimensions. Phys. Rev. Lett, 51(10):853–856, 1983.

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Duchi and S. Rinaldi. An object grammar for column-convex polyominoes. Ann. Comb., 8(1):27–36, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  27. I. G. Enting and A. J. Guttmann. On the area of square lattice polygons. J. Statist. Phys., 58(3–4):475–484, 1990.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. S. Feretić. The column-convex polyominoes perimeter generating function for everybody. Croatica ChemicaActa, 69(3):741–756, 1996.

    Google Scholar 

  29. S. Feretić. A new way of counting the column-convex polyominoes by perimeter. Discrete Math, 180(1–3): 173–184, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Feretic. An alternative method for q-counting directed column-convex polyominoes. Discrete Math, 210(1–3):55–70, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Feretić. A q-enumeration of convex polyominoes by the festoon approach. Theoret. Com-put. Sci., 319(1–3):333–356, 2004.

    Article  MATH  Google Scholar 

  32. S. Feretić and D. Svrtan. On the number of column-convex polyominoes with given perimeter and number of columns. In Barlotti, Delest, and Pinzani, editors, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, Italy), pages 201–214, 1993.

    Google Scholar 

  33. P. Flajolet and R. Sedgewick. Analytic Combinatorics. Preliminary version available at http://pauillac.inria.fr/algo/flajolet/Publications/books.html.

  34. G. Gasper and M. Rahman. Basic hypergeometric series, volume 35 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  35. A. J. Guttmann and T. Prellberg. Staircase polygons, elliptic integrals, Heun functions and lattice Green functions. Phys. Rev. E, 47:R2233–R2236, 1993.

    Article  ADS  Google Scholar 

  36. I. Jensen and A. J. Guttmann. Self-avoiding polygons on the square lattice. J. Phys. A, 32(26):4867–4876, 1999.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. I. Jensen and A. J. Guttmann. Statistics of lattice animals (polyominoes) and polygons. J. Phys. A, 33(29):L257–L263, 2000.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. D. A. Klarner. Some results concerning polyominoes. Fibonacci Quart., 3:9–20, 1965.

    MATH  MathSciNet  Google Scholar 

  39. D. A. Klarner. Cell growth problems. Canad. J. Math., 19:851–863, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  40. D. A. Klarner and R. L. Rivest. Asymptotic bounds for the number of convex n-ominoes. Discrete Math., 8:31–40, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  41. Y. Le Borgne and J.-F. Marckert. Directed animals and gas models revisited. Electron. J. Combin., R71, 2007.

    Google Scholar 

  42. N. Madras and G. Slade. The self-avoiding walk. Probability and its Applications. Birkhaüser Boston Inc., Boston, MA, 1993.

    Google Scholar 

  43. G. Pólya. On the number of certain lattice polygons. J. Combinatorial Theory, 6:102–105, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  44. T. Prellberg and R. Brak. Critical exponents from nonlinear functional equations for partially directed cluster models. J. Stat. Phys., 78(3/4):701–730, 1995.

    Article  MATH  ADS  Google Scholar 

  45. V. Privman and M. Barma. Radii of gyration of fully and partially directed animals. Z. Phys. B: Cond. Mat., 57:59–63, 1984.

    Article  ADS  Google Scholar 

  46. V. Privman and N. M. Švrakić. Exact generating function for fully directed compact lattice animals. Phys. Rev. Lett., 60(12):1107–1109, 1988.

    Article  ADS  MathSciNet  Google Scholar 

  47. H. Prodinger. The kernel method: a collection of examples. S ém. Lothar. Combin., 50:Art. B50f, 19 pp. (electronic), 2003/04.

    Google Scholar 

  48. R. C. Read. Contributions to the cell growth problem. Canad. J. Math., 14:1–20, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  49. A. Rechnitzer. Haruspicy 2: the anisotropic generating function of self-avoiding polygons is not D-finite. J. Combin. Theory Ser. A, 113(3):520–546, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Springer-Verlag, New York, 1978. Texts and Monographs in Computer Science.

    Google Scholar 

  51. H. N. V. Temperley. Combinatorial problems suggested by the statistical mechanics of domains and of rubber-like molecules. Phys. Rev. (2), 103:1–16, 1956.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. G. X. Viennot. Heaps of pieces. I. Basic definitions and combinatorial lemmas. In Combina-toire énumérative (Montré al, 1985), volume 1234 of Lecture Notes in Math., pages 321–350. Springer, Berlin, 1986.

    Chapter  Google Scholar 

  53. M. Vöge and A. J. Guttmann. On the number of hexagonal polyominoes. Theoret. Comput. Sci, 307(2):433–453, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  54. T. Yuba and M. Hoshi. Binary search networks: a new method for key searching. Inform. Process. Lett., 24:59–65, 1987.

    Article  MATH  Google Scholar 

  55. D. Zeilberger. Symbol-crunching with the transfer-matrix method in order to count skinny physical creatures. Integers, pages A9, 34pp. (electronic), 2000.

    Google Scholar 

  56. D. Zeilberger. The umbral transfer-matrix method. III. Counting animals. New York J. Math., 7:223–231 (electronic), 2001.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Bousquet-Mélou, M., Brak, R. (2009). Exactly Solved Models. In: Guttman, A.J. (eds) Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol 775. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9927-4_3

Download citation

Publish with us

Policies and ethics