Reproducibility of Image Analysis for Breast Ultrasound Computer-Aided Diagnosis

  • M. Galperin
  • M.P. Andre
  • C.H. Barker
  • L.K. Olson
  • M. O’Boyle
  • K. Richman
  • L. Mantrawadi
Conference paper

DOI: 10.1007/978-1-4020-8823-0_55

Part of the Acoustical Imaging book series (ACIM, volume 29)
Cite this paper as:
Galperin M. et al. (2008) Reproducibility of Image Analysis for Breast Ultrasound Computer-Aided Diagnosis. In: Akiyama I. (eds) Acoustical Imaging. Acoustical Imaging, vol 29. Springer, Dordrecht

Abstract

We employ a Case-Based Reasoning approach to analyze breast masses in ultrasound and to classify them for level of suspicion for cancer following the ACR BI-RADS® protocol. Our computer-aided imaging system (Breast Companion®, BC) measures numeric features of the mass, determines Relative Similarity (RS) between the mass of interest and images in a database of masses with known findings and outcomes, then retrieves and displays the images of the most similar known masses instantaneously for the radiologist to review during interpretation. This study tested BC for reproducibility of performance in comparison to that of three radiologists under a variety of operating conditions. The long-term goal is to standardize diagnosis, reduce radiologist variability and reduce false positives.

Key words

Computer-aided diagnosis Breast cancer Ultrasound Sonography ROC analysis Relative similarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. Galperin
    • 1
    • 2
    • 3
  • M.P. Andre
    • 1
    • 2
    • 3
  • C.H. Barker
    • 1
    • 2
    • 3
  • L.K. Olson
    • 1
    • 2
    • 3
  • M. O’Boyle
    • 1
    • 2
    • 3
  • K. Richman
    • 1
    • 2
    • 3
  • L. Mantrawadi
    • 1
    • 2
    • 3
  1. 1.Almen Laboratories, Inc.VistaUSA
  2. 2.Dept. of RadiologySan Diego VA Healthcare SystemSan DiegoUSA
  3. 3.Dept. of RadiologyUniversity of CaliforniaSan DiegoUSA

Personalised recommendations