Skip to main content

Biogenesis of c-type Cytochromes and Cytochrome Complexes

  • Chapter
The Purple Phototrophic Bacteria

Summary

In most anoxygenic phototrophic bacteria, apocytochromes c are synthesized in the cytoplasm, translocated across the membrane and matured to holocytochromes c on the periplasmic side. The extracytoplasmic maturation process requires a complex biogenesis pathway (Ccm-system I) consisting of up to ten components to carry out specific steps. These include translocation and delivery of the heme, chaperoning and thio-oxidoreduction of the apocytochrome c as well as heme ligation steps. Because cytochromes are often part of multi-subunit protein complexes, matured holocytochromes may be assembled into active enzyme complexes. Examples include the ubihydroquinone:cytochrome c oxidoreductase (cytochrome bc 1 complex) or the aa 3- or cbb 3-type cytochrome c oxidases. Assemblies of these complexes are tightly coordinated and often require additional specific biogenesis components. In this chapter, we discuss the maturation process of c-type cytochromes and the assembly pathways of the aa 3- and cbb 3-type cytochrome c oxidases in anoxygenic phototrophic bacteria, with a specific focus on Rhodobacter species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

aa3-Cox:

aa3-type Cyt c oxidase

apoCyt:

immature Cyt c without its heme cofactor attached

B. :

bacillus

BN-PAGE:

blue-native polyacrylamide gel electrophoresis

cbb3-Cox:

cbb3-type Cyt c oxidase

Ccm:

cytochrome c maturation system I

Ccs:

cytochrome maturation system II

Cyt:

cytochrome

holo- and apo-CcmE:

CcmE with and without its heme cofactor, respectively

holoCyt:

mature Cyt c with its heme cofactor attached

pre-apoCyt:

apoCyt c precursor with its signal sequence

Ps:

photosynthetic

Rba. :

Rhodobacter

Res:

respiratory

TPR:

Tetratricopeptide repeats

WWD:

Tryptophan rich motif

References

  • Ahuja U and Thony-Meyer L (2005) CcmD is involved in complex formation between CcmC and the heme chaperone CcmE during cytochrome c maturation. J Biol Chem 280: 236–243

    PubMed  CAS  Google Scholar 

  • Allen JW, Tomlinson EJ, Hong L and Ferguson SJ (2002) The Escherichia coli cytochrome c maturation (Ccm) system does not detectably attach heme to single cysteine variants of an apocytochrome c. J Biol Chem 277: 33559–33563

    Article  PubMed  CAS  Google Scholar 

  • Allen JW, Barker PD and Ferguson SJ (2003a) A cytochrome b 562 variant with a c-type cytochrome CXXCH heme-binding motif as a probe of the Escherichia coli cytochrome c maturation system. J Biol Chem 278: 52075–52083

    Article  PubMed  CAS  Google Scholar 

  • Allen JW, Daltrop O, Stevens JM and Ferguson SJ (2003b) C-type cytochromes: Diverse structures and biogenesis systems pose evolutionary problems. Philos Trans R Soc Lond B Biol Sci 358: 255–266

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, Katsari E, Katsaros N, Kubicek K and Mangani S (2005) A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase. Proc Natl Acad Sci USA 102: 3994–3999

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Cantini F, D’Amelio N and Gaggelli E (2006) Human SOD1 before harboring the catalytic metal: Solution structure of copper-depleted, disulfide-reduced form. J Biol Chem 281: 2333–2337

    Article  PubMed  CAS  Google Scholar 

  • Barrientos A, Barros MH, Valnot I, Rotig A, Rustin P and Tzagoloff A (2002a) Cytochrome oxidase in health and disease. Gene 286: 53–63

    Article  PubMed  CAS  Google Scholar 

  • Barrientos A, Korr D and Tzagoloff A (2002b) Shy lp is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh’s syndrome. EMBO J 21: 43–52

    Article  PubMed  CAS  Google Scholar 

  • Beckett CS, Loughman JA, Karberg KA, Donato GM, Goldman WE and Kranz RG (2000) Four genes are required for the system II cytochrome c biogenesis pathway in Bordetella pertussis, a unique bacterial model. Mol Microbiol 38: 465–481

    Article  PubMed  CAS  Google Scholar 

  • Beckman DL and Kranz RG (1993) Cytochromes c biogenesis in aphotosynthetic bacterium requires a periplasmic thioredoxin-like protein. Proc Natl Acad Sci USA 90: 2179–2183

    Article  PubMed  CAS  Google Scholar 

  • Beckman DL, Trawick DR and Kranz RG (1992) Bacterial cytochromes c biogenesis. Genes Dev 6: 268–283

    Article  PubMed  CAS  Google Scholar 

  • Bernard DG, Quevillon-Cheruel S, Merchant S, Guiard B and Hamel PP (2005) Cyc2p, a membrane-bound flavoprotein involved in the maturation of mitochondrial c-type cytochromes. J Biol Chem 280: 39852–39859

    Article  PubMed  CAS  Google Scholar 

  • Borsetti F, Tremaroli V, Michelacci F, Borghese R, Winterstein C, Daldal F and Zannoni D (2005) Tellurite effects on Rhodobacter capsulatus cell viability and Superoxide dismutase activity under oxidative stress conditions. Res Microbiol 156: 807–813

    Article  PubMed  CAS  Google Scholar 

  • Bratton M, Mills D, Castleden CK, Hosier J and Meunier B (2003) Disease-related mutations in cytochrome c oxidase studied in yeast and bacterial models. Eur J Biochem 270: 1222–1230

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Hosier J, Shapleigh J, Revzin A and Ferguson-Miller S (1992) Cytochrome aa 3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. The coxII/coxIII operon codes for structural and assembly proteins homologous to those in yeast. J Biol Chem 267: 24273–24278

    PubMed  CAS  Google Scholar 

  • Carr HS and Winge DR (2003) Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res 36: 309–316

    Article  PubMed  CAS  Google Scholar 

  • Chinenov YV (2000) Cytochrome c oxidase assembly factors with a thioredoxin fold are conserved among prokaryotes and eukaryotes. J Mol Med 78: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Colbert CL, Wu Q, Erbel PJ, Gardner KH and Deisenhofer J (2006) Mechanism of substrate specificity in Bacillus subtilis ResA, a thioredoxin-like protein involved in cytochrome c maturation. Proc Natl Acad Sci USA 103: 4410–4415

    Article  PubMed  CAS  Google Scholar 

  • Collet JF and Bardwell JC (2002) Oxidative protein folding in bacteria. Mol Microbiol 44: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Crow A, Le Brun NE and Oubrie A (2005) The role of ResA in type II cytochrome c maturation. Biochem Soc Trans 33: 149–151

    Article  PubMed  CAS  Google Scholar 

  • Davidson E and Daldal F (1987) Primary structure of the bc 1 complex of Rhodopseudomonas capsulata. Nucleotide sequence of the pet operon encoding the Rieske cytochrome b and cytochrome c 1 apoproteins. J Mol Biol 195: 13–24

    Article  PubMed  CAS  Google Scholar 

  • de Gier JW, Schepper M, Reijnders WN, van Dyck SJ, Slotboom DJ, Warne A, Saraste M, Krab K, Finel M, Stouthamer AH, van Spanning RJ and van der Oost J (1996) Structural and functional analysis of aa 3-type and cbb 3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design. Mol Microbiol 20: 1247–1260

    Article  PubMed  Google Scholar 

  • Deshmukh M, Brasseur G and Daldal F (2000) Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes. Mol Microbiol 35: 123–138

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh M, May M, Zhang Y, Gabbert KK, Karberg KA, Kranz RG and Daldal F (2002) Overexpression of ccll-2 can bypass the need for the putative apocytochrome chaperone CycH during the biogenesis of c-type cytochromes. Mol Microbiol 46: 1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh M, Turkarslan S, Astor D, Valkova-Valchanova M and Daldal F (2003) The dithiol:disulfide oxidoreductases DsbA and DsbB of Rhodobacter capsulatus are not directly involved in cytochrome c biogenesis, but their inactivation restores the cytochrome c biogenesis defect of CcdA-null mutants. J Bacteriol 185: 3361–3372

    Article  PubMed  CAS  Google Scholar 

  • Drygas ME, Lambowitz AM and Nargang FE (1989) Cloning and analysis of the Neurospora crassa gene for cytochrome c heme lyase. J Biol Chem 264: 17897–17906

    PubMed  CAS  Google Scholar 

  • Dumont ME, Ernst JF, Hampsey DM and Sherman F (1987) Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J 6: 235–241

    PubMed  CAS  Google Scholar 

  • Eraso JM and Kaplan S (2000) From redox flow to gene regulation: Role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry 39: 2052–2062

    Article  PubMed  CAS  Google Scholar 

  • Erlendsson LS and Hederstedt L (2002) Mutations in the thioldisulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. J Bacteriol 184: 1423–1429

    Article  PubMed  CAS  Google Scholar 

  • Erlendsson LS, Acheson RM, Hederstedt L and Le Brun NE (2003) Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome c synthesis. J Biol Chem 278: 17852–17858

    Article  PubMed  CAS  Google Scholar 

  • Fabianek RA, Hennecke H and Thony-Meyer L (2000) Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli. FEMS Microbiol Rev 24: 303–316

    Article  PubMed  CAS  Google Scholar 

  • Feissner RE, Richard-Fogal CL, Frawley ER and Kranz RG (2006a) ABC transporter-mediatedrelease of ahaem chaperone allows cytochrome c biogenesis. Mol Microbiol 61: 219–231

    Article  PubMed  CAS  Google Scholar 

  • Feissner RE, Richard-Fogal CL, Frawley ER, Loughman JA, Earley KW and Kranz RG (2006b) Recombinant cytochromes c biogenesis systems I and II and analysis of haem delivery pathways in Escherichia coli. Mol Microbiol 60: 563–577

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Horsman JA, Berry E, Shapleigh JP, Alben JO and Gennis RB (1994) A novel cytochrome c oxidase from Rhodobacter sphaeroides that lacks CuA. Biochemistry 33: 3113–3119

    Article  PubMed  CAS  Google Scholar 

  • Goldman BS and Kranz RG (2001) ABC transporters associated with cytochrome c biogenesis. Res Microbiol 152: 323–329

    Article  PubMed  CAS  Google Scholar 

  • Goldman BS, Beckman DL, Bali A, Monika EM, Gabbert KK and Kranz RG (1997) Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis. J Mol Biol 268: 724–738

    Article  PubMed  CAS  Google Scholar 

  • Goldman BS, Beck DL, Monika EM and Kranz RG (1998) Transmembrane heme delivery systems. Proc Natl Acad Sci USA 95: 5003–5008

    Article  PubMed  CAS  Google Scholar 

  • Gray KA, Grooms M, Myllykallio H, Moomaw C, Slaughter C and Daldal F (1994) Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a CuA center. Biochemistry 33: 3120–3127

    Article  PubMed  CAS  Google Scholar 

  • Gray KA and Daldal F (1995) Mutational Studies of the Cytochrome bc 1 complex. In: Blankenship RE, Madigan, MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photo synthesis and Respiration, Vol. 2), pp 747–774. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hiser L, Di Valentin M, Hamer AG and Hosier JP (2000) Cox 11p is required for stable formation of the CuB and magnesium centers of cytochrome c oxidase. J Biol Chem 275: 619–623

    Article  PubMed  CAS  Google Scholar 

  • Hiser L and Hosier JP (2001) Heme A is not essential for assembly of the subunits of cytochrome c oxidase of Rhodobacter sphaeroides. J Biol Chem 276: 45403–45407

    Article  PubMed  CAS  Google Scholar 

  • Horng YC, Cobine PA, Maxfield AB, Carr HS and Winge DR (2004) Specific copper transfer from the Cox 17 metallo-chaperone to both Scol and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 279: 35334–35340

    Article  PubMed  CAS  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B and Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376: 660–669

    Article  PubMed  CAS  Google Scholar 

  • Jaksch M, Ogilvie I, Yao J, Kortenhaus G, Bresser HG, Gerbitz KD and Shoubridge EA (2000) Mutations in SCO2 are associated with a distinct form of hypertrophie cardiomyopathy and cytochrome c oxidase deficiency. Hum Mol Genet 9: 795–801

    Article  PubMed  CAS  Google Scholar 

  • Kadokura H, Katzen F and Beckwith J (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72: 111–135

    Article  PubMed  CAS  Google Scholar 

  • Kahn D, David M, Domergue O, Daveran ML, Ghai J, Hirsch PR and Batut J (1989) Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J Bacteriol 171: 929–939

    PubMed  CAS  Google Scholar 

  • Katzen F, Deshmukh M, Daldal F and Beckwith J (2002) Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J 21: 3960–3969

    Article  PubMed  CAS  Google Scholar 

  • Khalimonchuk O, Ostermann K and Rodel G (2005) Evidence for the association of yeast mitochondrial ribosomes with Cox 11p, a protein required for the CuB site formation of cytochrome c oxidase. Curr Genet 47: 223–233

    Article  PubMed  CAS  Google Scholar 

  • Koch HG, Hwang O and Daldal F (1998a) Isolation and characterization of Rhodobacter capsulatus mutants affected in cytochrome cbb 3 oxidase activity. J Bacteriol 180: 969–978

    PubMed  CAS  Google Scholar 

  • Koch HG, Myllykallio H and Daldal F (1998b) Using genetics to explore cytochrome function and structure in Rhodobacter. Methods Enzymol 297: 81–94

    Article  CAS  Google Scholar 

  • Koch HG, Winterstein C, Saribas AS, Alben JO and Daldal F (2000) Roles of the ccoGHIS gene products in the biogenesis of the cbb 3-type cytochrome c oxidase. J Mol Biol 297: 49–65

    Article  PubMed  CAS  Google Scholar 

  • Kranz RG (1989) Isolation of mutants and genes involved in cytochromes c biosynthesis in Rhodobacter capsulatus. J Bacteriol 171: 456–464

    PubMed  CAS  Google Scholar 

  • Kranz R, Lill R, Goldman B, Bonnard G and Merchant S (1998) Molecular mechanisms of cytochrome c biogenesis: Three distinct systems. Mol Microbiol 29: 383–396

    Article  PubMed  CAS  Google Scholar 

  • Kranz RG, Beckett CS and Goldman BS (2002) Genomic analyses of bacterial respiratory and cytochrome c assembly systems: Bordetella as a model for the system II cytochrome c biogenesis pathway. Res Microbiol 153: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Kulajta C, Thumfart JO, Haid S, Daldal F and Koch HG (2006) Multi-step assembly pathway of the cbb 3-type cytochrome c oxidase complex. J Mol Biol 355: 989–1004

    Article  PubMed  CAS  Google Scholar 

  • Kvint K, Nachin L, Diez A and Nystrom T (2003) The bacterial universal stress protein: Function and regulation. Curr Opin Microbiol 6: 140–145

    Article  PubMed  CAS  Google Scholar 

  • La Monica RF and Marrs BL (1976) The branched respiratory system of photosynthetically grown Rhodopseudomonas capsulata. Biochim Biophys Acta 423: 431–439

    Article  PubMed  Google Scholar 

  • Lang SE, Jenney FE, Jr. and Daldal F (1996) Rhodobacter capsulatus CycH : A bipartite gene product with pleiotropic effects on the biogenesis of structurally different c-type cytochromes. J Bacteriol 178: 5279–5290

    PubMed  CAS  Google Scholar 

  • Le Brun NE, Bengtsson J and Hederstedt L (2000) Genes required for cytochrome c synthesis in Bacillus subtilis. Mol Microbiol 36: 638–650

    Article  PubMed  Google Scholar 

  • Lee D, Pervushin K, Bischof D, Braun M and Thony-Meyer L (2005) Unusual heme-histidine bond in the active site of a chaperone. J Am Chem Soc 127: 3716–3717

    Article  PubMed  CAS  Google Scholar 

  • Lewin A, Crow A, Oubrie A and Le Brun NE (2006) Molecular basis for specificity of the extracytoplasmic thioredoxin ResA. J Biol Chem 281: 35467–35477

    Article  PubMed  CAS  Google Scholar 

  • Mattatall NR, Jazairi J and Hill BC (2000) Characterization of YpmQ, an accessory protein required for the expression of cytochrome c oxidase in Bacillus subtilis. J Biol Chem 275: 28802–28809

    Article  PubMed  CAS  Google Scholar 

  • McEwan AG, Lewin A, Davy SL, Boetzel R, Leech A, Walker D, Wood T and Moore GR (2002) PrrC from Rhodobacter sphaeroides, a homologue of eukaryotic Sco proteins, is a copper-binding protein and may have a thiol-disulfide oxido-reductase activity. FEBS Lett 518: 10–16

    Article  PubMed  CAS  Google Scholar 

  • Metheringham R, Tyson KL, Crooke H, Missiakas D, Raina S and Cole JA (1996) Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12. Mol Gen Genet 253: 95–102

    PubMed  CAS  Google Scholar 

  • Monika EM, Goldman BS, Beckman DL and Kranz RG (1997) A thioreduction pathway tethered to the membrane for periplasmic cytochromes c biogenesis; in vitro and in vivo studies. J Mol Biol 271: 679–692

    Article  PubMed  CAS  Google Scholar 

  • Nobrega MP, Nobrega FG and Tzagoloff A (1990) COX10 codes for a protein homologous to the ORF 1 product of Paracoccus denitrificans and is required for the synthesis of yeast cytochrome oxidase. J Biol Chem 265: 14220–14226

    PubMed  CAS  Google Scholar 

  • Oh JI and Kaplan S (2002) Oxygen adaptation. The role of the CcoQ subunit of the cbb 3 cytochrome c oxidase of Rhodobacter sphaeroides 2.4.1. J Biol Chem 277: 16220–16228

    Article  PubMed  CAS  Google Scholar 

  • Preisig O, Zufferey R and Hennecke H (1996) The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb 3-type cytochrome oxidase. Arch Microbiol 165: 297–305

    Article  PubMed  CAS  Google Scholar 

  • Reid E, Eaves DJ and Cole JA (1998) The CcmE protein from Escherichia coli is a haem-binding protein. FEMS Microbiol Lett 166: 369–375

    Article  PubMed  CAS  Google Scholar 

  • Reid E, Cole J and Eaves DJ (2001) The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem J 355: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Ren Q and Thony-Meyer L (2001) Physical interaction of CcmC with heme and the heme chaperone CcmE during cytochrome c maturation. J Biol Chem 276: 32591–32596

    Article  PubMed  CAS  Google Scholar 

  • Ren Q, Ahuja U and Thony-Meyer L (2002) A bacterial cytochrome c hemelyase. CcmF forms a complex with the heme chaperone CcmE and CcmH but not with apocytochrome c. J Biol Chem 277: 7657–7663

    Article  PubMed  CAS  Google Scholar 

  • Richard-Fogal CL, Frawley ER, Feissner RE and Kranz RG (2007) Heme concentration dependence and metalloporphyrin inhibition of the system I and II cytochrome c assembly pathways. J Bacteriol 189: 455–463

    Article  PubMed  CAS  Google Scholar 

  • Richter OM and Ludwig B (2003) Cytochrome c oxidase-structure, function and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol 147: 47–74

    Article  PubMed  CAS  Google Scholar 

  • Sambongi Y and Ferguson SJ (1996) Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds. FEBS Lett 398: 265–268

    Article  PubMed  CAS  Google Scholar 

  • Sanders C, Deshmukh M, Astor D, Kranz RG and Daldal F (2005a) Overproduction of CcmG and CcmFH(Rc) fully suppresses the c-type cytochrome biogenesis defect of Rhodobacter capsulatus CcmI-null mutants. J Bacteriol 187: 4245–4256

    Article  PubMed  CAS  Google Scholar 

  • Sanders C, Turkarslan S and Daldal F (2005b) Periplasmic oxidative folding and cytochrome c maturation: A mechanistic view of stereo-selective heme attachment. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects and Global Perspectives, pp 421–424. Allen Press, Lawrence

    Google Scholar 

  • Sanders C, Boulay C and Daldal F (2007) Membrane-spanning and periplasmic segments of CcmI have distinct functions during cytochrome c biogenesis in Rhodobacter capsulatus. J Bacteriol 189: 789–800

    Article  PubMed  CAS  Google Scholar 

  • Schaefer L, Ballabio A and Zoghbi HY (1996) Cloning and characterization of a putative human holocytochrome c-type synthetase gene (HCCS) isolated from the critical region for microphthalmia with linear skin defects (MLS). Genomics 34: 166–172

    Article  PubMed  CAS  Google Scholar 

  • Schulz H, Hennecke H and Thony-Meyer L (1998) Prototype of a heme chaperone essential for cytochrome c maturation. Science 281: 1197–1200

    Article  PubMed  CAS  Google Scholar 

  • Schulz H, Fabianek RA, Pellicioli EC, Hennecke H and Thony-Meyer L (1999) Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB. Proc Natl Acad Sci USA 96: 6462–6467

    Article  PubMed  CAS  Google Scholar 

  • Setterdahl AT, Goldman BS, Hirasawa M, Jacquot P, Smith AJ, Kranz RG and Knaff DB (2000) Oxidation-reduction properties of disulfide-containing proteins of the Rhodobacter capsulatus cytochrome c biogenesis system. Biochemistry 39: 10172–10176

    Article  PubMed  CAS  Google Scholar 

  • Smith D, Gray J, Mitchell L, Antholine WE and Hosler JP (2005) Assembly of cytochrome-c oxidase in the absence of assembly protein Surf 1p leads to loss of the active site heme. J Biol Chem 280: 17652–17656

    Article  PubMed  CAS  Google Scholar 

  • Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P and Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321: 329–339

    Article  PubMed  CAS  Google Scholar 

  • Swem DL, Swem LR, Setterdahl A and Bauer CE (2005) Involvement of SenC in assembly of cytochrome c oxidase in Rhodobacter capsulatus. J Bacteriol 187: 8081–8087

    Article  PubMed  CAS  Google Scholar 

  • Takamiya K. (1983) Properties of the cytochrome c oxidase activity of cytochrome b 561 from photoanaerobically grown Rhodopseudomonas sphaeroides. Plant and Cell Physiology 24: 1457–1462

    CAS  Google Scholar 

  • Thony-Meyer L (1997) Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61: 337–376

    PubMed  CAS  Google Scholar 

  • Thony-Meyer L (2002) Cytochrome c maturation: A complex pathway for a simple task? Biochem Soc Trans 30: 633–638

    Article  PubMed  CAS  Google Scholar 

  • Thony-Meyer L (2003) A heme chaperone for cytochrome c biosynthesis. Biochemistry 42: 13099–13105

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Sue C, Banting GS, Yang H, Glerum DM, Hendrickson WA and Schon EA (2005) Crystal structure of human SCO1: Implications for redox signaling by a mitochondrial cytochrome c oxidase ‘assembly’ protein. J Biol Chem 280: 15202–15211

    Article  PubMed  CAS  Google Scholar 

  • Witt H and Ludwig B (1997) Isolation, analysis and deletion of the gene coding for subunit IV of cytochrome c oxidase in Paracoccus denitrificans. J Biol Chem 272: 5514–5517

    Article  PubMed  CAS  Google Scholar 

  • Zannoni D, Melandri BA and Baccarini-Melandri A (1976) Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata. Biochim Biophys Acta 423: 413–430

    Article  PubMed  CAS  Google Scholar 

  • Zannoni D and Daldal F (1993) The role of c-type cytochromes in catalyzing oxidative and photosynthetic electron transport in the dual functional plasmamembrane of facultative phototrophs. Arch Microbiol 160: 413–423

    Article  PubMed  CAS  Google Scholar 

  • Zollner A, Rodel G and Haid A (1992) Molecular cloning and characterization of the Saccharomyces cerevisiae CYT2 gene encoding cytochrome-c 1-heme lyase. Eur J Biochem 207: 1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Zufferey R, Preisig O, Hennecke H and Thony-Meyer L (1996) Assembly and function of the cytochrome cbb 3 oxidase subunits in Bradyrhizobium japonicum. J Biol Chem 271: 9114–9119

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fevzi Daldal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Sanders, C. et al. (2009). Biogenesis of c-type Cytochromes and Cytochrome Complexes. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_21

Download citation

Publish with us

Policies and ethics