Skip to main content

In vitro Shoot Development of Taxus Wallichiana Zucc., a Valuable Medicinal Plant

  • Chapter
Book cover Protocols for Micropropagation of Woody Trees and Fruits

About 10 genus of Taxus spp. are now disposing in temperate zones at the Northern Hemisphere of which the most popular are Taxus brevifolia Nutt., Taxus baccata L., Taxus wallichiana Zucc. and Taxus cuspidata Siels et Zucc. For the last three decades, Taxus spp. has been concerned after Wani and his colleagues (Triangle Research Institute, NC, USA) discovered a novel anticancer diterpene amide – named “taxol” (paclitaxel) – from the bark of Pacific yew (Taxus baccata) extract (Wani et al., 1971; Edgington, 1991). This compound was approved to have clinical treatment of ovarian and breast cancer by the United States Food and Drug Administration (FDA). In addition, taxol also has a significant activity in the treatment of malignant melanoma, lung cancer, and other solid tumors (Wickremesinhe & Arteca, 1993, 1994). Taxol has also been successfully isolated from other species of the genus Taxus and from different parts of the plant, including pollen, seed, needles, young stems, woody stems, wood, bark and roots (Wani et al., 1971; Vidensek et al., 1990; Witherup et al., 1990; Fett-Neto et al., 1992; Wickremesinhe & Arteca, 1994). The supply of taxol for clinical use is still limited and depends on extraction from the yew plant, as its bark and needle are the main commercial source. Based on the current bark-extraction procedures, nearly 7,000 kg of bark is needed to produce 1 kg of taxol (Cragg et al., 1993). In addition, Taxus species grow very slowly and their seed dormancy is up to 1.5 to 2 years (Steinfeld, 1992). It is very obvious that investigation for alternative sources for the cancer chemotherapeutic agent taxol is urgently needed. Tissue culture of Taxus sp. is being considered as a very promising approach towards providing a long-term source of this valuable compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, A. (1985) In vitro shoot differentiation in Eucalyptus citriodora Hook: effect of activated charcoal. Ind. J. F. 8, 340-341.

    Google Scholar 

  • Chang, S.H., Ho, C.K., Chen, Z.Z. & Tsay, J.Y. (2001) Micropropagation of Taxus mairei from mature trees. Plant Cell Rep. 20, 496-502.

    Article  CAS  Google Scholar 

  • Chee, P.P. (1994) In vitro culture of zygotic embryos of Taxus species. HortSci. 29, 695-697.

    Google Scholar 

  • Cragg, G.M., Schepartz, S.A., Suffness, M. & Grever, M.R. (1993) The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J. Nat. Prod. 56, 1657-1668.

    Article  CAS  PubMed  Google Scholar 

  • Edgington, S.M. (1991) Taxol: out of the woods. Biotech. 9, 933-938.

    Article  CAS  Google Scholar 

  • Fett-Neto, A.G., DiCosmo, F., Reynolds, W.F. & Sakata, K. (1992) Cell culture of Taxus as a source of the antineoplastic drug taxol and related taxanes. Biotech. 10, 1572-1575.

    Article  CAS  Google Scholar 

  • Flores, H.E. & Sgrignoli, P.J. (1991) In vitro culture and precocious germination of Taxus embryos. In vitro Cell. Dev. Biol. 27, 139-142.

    Article  Google Scholar 

  • Larue, C.D. (1953). Studies on growth and regeneration in gametophytes and sporophytes of Gymnosperms. In Abnormal and pathological plant growth. Rep. Sym. Held. New York. pp. 187-208.

    Google Scholar 

  • Lepage-Degivry, M.T. (1973) Etude en culture in vitro de la dormance embryonnaire chez Taxus baccata L. Biol. Plant 15, 264-269.

    Article  CAS  Google Scholar 

  • Murashige, T. & Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-497.

    Article  CAS  Google Scholar 

  • Pan, M.J. & Staden, J. (1998) The use of charcoal in in vitro culture - A review. Plant Growth Reg. 26, 155-163.

    Article  CAS  Google Scholar 

  • Steinfield, D. (1992) Early lessons from propagating Pacific yew. Rocky Mountain Forest and Range. Expt. Sta. Tech. Res. Rept. p. 221.

    Google Scholar 

  • Tuleke, W. (1959) The pollen cultures of C. D. Larue: A tissue from the pollen of Taxus. Bull. Torrey Bot. Club 86, 283-289.

    Article  Google Scholar 

  • Vidensek, N., Lim, P., Campbell, A. & Carson, C. (1990) Taxol content in bark, wood, root, leaf, twig and seedling from several Taxus species. J. Nat. Prod. 53, 1609-1610.

    Article  CAS  PubMed  Google Scholar 

  • Wani, M.C., Taylor, H.L., Wall, M.E., Coggon, P. & McPhail, A.T. (1971) Plant antitumor agents VI. The isolation and structure of taxol, anovel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325-2327.

    Article  CAS  PubMed  Google Scholar 

  • Webb, D.T., Flinn, B.S. & Georgis, W. (1988) Micropropagation of eastern white pine (Pinus strobus L.). Can. J. For. Res. 18, 1570-1580.

    Article  Google Scholar 

  • Wickremesinhe, E.R.M. & Arteca, R.N. (1993) Taxus callus cultures: initiation, growth optimization, characterization and taxol production. Plant Cell Tiss. Org. Cult. 35, 181-193.

    Article  CAS  Google Scholar 

  • Wickremesinhe, E.R.M. & Arteca, R.N. (1994) Taxus callus cultures: optimizing growth and production of taxol. J. Plant Physiol. 144, 183-188.

    CAS  Google Scholar 

  • Witherup, K.M., Look, S.A., Stasko, M.W., Ghiorzi, T.J. & Muschik, G.M. (1990) Taxus spp. needles contain amounts of taxol comparable to the bark of Taxus brevifolia: analysis and isolation. J. Nat. Prod. 53, 1249-1255.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Nhut, D.T., Hien, N.T.T., Don, N.T., Khiem, D.V. (2007). In vitro Shoot Development of Taxus Wallichiana Zucc., a Valuable Medicinal Plant. In: Jain, S.M., Häggman, H. (eds) Protocols for Micropropagation of Woody Trees and Fruits. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6352-7_10

Download citation

Publish with us

Policies and ethics