Skip to main content

Nectar chemistry

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, L.S. (2000). The ecological significance of toxic nectar. Oikos, 91, 409-420.

    Article  Google Scholar 

  • Adler, L.S., & Irwin, R.E. (2005). Ecological costs and benefits of defenses in nectar. Ecol-ogy, 86, 2968-2978.

    Google Scholar 

  • Adler, L.S., & Wink, M. (2001). Transfer of quinolizidine alkaloids from hosts to hemipara-sites in two Castilleja-Lupinus associations: analysis of floral and vegetative tissues. Biochemical Systematics and Ecology, 29, 551-561.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, S., Duval, D.L., Weinhold, L.C., & Pardini, R.S. (1991). Cabbage looper antioxidant enzymes: tissue specificity. Insect Biochemistry, 21, 563-572.

    Article  CAS  Google Scholar 

  • Ahmad, S., Pritsos, C.A., Bowen, S.M., Heisler, C.R., Blomquist, G.J., & Pardini, R.S. (1988). Antioxidant enzymes of larvae of the cabbage looper moth, Trichoplusia ni: sub-cellular distribution and activities of superoxide dismutase, catalase and glutathione reductase. Free Radical Research Communications, 4, 403-408.

    Article  CAS  PubMed  Google Scholar 

  • Aizen, M.A. (2003). Down-facing flowers, humingbirds and rain. Taxon, 52, 675-680.

    Article  Google Scholar 

  • Alm, J., Ohnmeiss, T.E., Lanza, J., & Vriesenga, L. (1990). Preference of cabbage white but-terflies and honey bees for nectar that contains amino acids. Oecologia, 84, 53-57.

    Article  Google Scholar 

  • Andersen, P.C., Brodbeck, B.V., & Mizell, R.F. (1989). Metabolism of amino acids, organic acids and sugars extracted from the xylem fluid of four host plants by adult Homalodisca coagulata. Entomologica Experimentalis et Applicata, 50, 149-159.

    Article  CAS  Google Scholar 

  • Andersson, S. (2003). Antennal responses to floral scents in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae). Chemoecology, 13, 13-20.

    Article  CAS  Google Scholar 

  • Ankri, S., & Mirelman, D. (1999). Antimicrobial properties of allicin from garlic. Microbes and Infection, 1, 125-129.

    Article  CAS  PubMed  Google Scholar 

  • Ankri, S., Miron, T., Rabinkov, A., Wilchek, M., & Mirelman, D. (1997). Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica. An-timicrobial Agents and Chemotherapy, 41, 2286-2288.

    CAS  Google Scholar 

  • Antonovics, J. (2005). Plant venereal diseases: insights from a messy metaphor. New Phy-tologist, 165, 71-80.

    Article  Google Scholar 

  • Baker, H.G. (1975). Sugar concentrations in nectars from hummingbird flowers. Biotropica, 7, 37-41.

    Article  Google Scholar 

  • Baker, H.G. (1978). Chemical aspects of the pollination biology of woody plants in the trop-ics. In: P.B. Tomlinson, & M.H. Zimmerman (Eds.), Tropical trees as living systems (pp. 57-82). Cambridge: Cambridge University Press.

    Google Scholar 

  • Baker, H.G., & Baker, I. (1973). Amino-acids in nectar and their evolutionary significance. Nature, 241, 543-545.

    Article  CAS  Google Scholar 

  • Baker, H.G., & Baker, I. (1975). Studies of nectar-constitution and pollinator-plant coevolu-tion. In:  L.E. Gilbert, & P.H. Raven (Eds.), Coevolution of animals and plants (pp. 100-140). Austin, Texas: University of Texas Press.

    Google Scholar 

  • Baker, H.G., & Baker, I. (1977). Intraspecific constancy of floral nectar amino acid comple-ments. Botanical Gazette, 138, 183-191.

    Article  CAS  Google Scholar 

  • Baker, H.G., & Baker, I. (1982a). Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: M.H. Nitecki (Ed.), Biochemical aspects of evolutionary biology (pp. 131-171). Chicago: University of Chicago Press.

    Google Scholar 

  • Baker, H.G., & Baker, I. (1983a). A brief historical review of the chemistry of floral nectar. In: B. Bentley, & T. Elias (Eds.), The biology of nectaries (pp. 126-152). New York: Columbia University Press.

    Google Scholar 

  • Baker, H.G., & Baker, I. (1983b). Floral nectar sugar constituents in relation to pollinator type. In: C.E. Jones, & R.J. Little (Eds.), Handbook of experimental pollination biology (pp. 117-141). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Baker, H.G., & Baker, I. (1986). The occurrence and significance of amino acids in floral nectar. Plant Systematics and Evolution, 151, 175-186.

    Article  CAS  Google Scholar 

  • Baker, H.G., Baker, I., & Hodges, S.A. (1998). Sugar composition of nectar and fruits con-sumed by birds and bats in the tropics and subtropics. Biotropica, 30, 559-586.

    Article  Google Scholar 

  • Baker, H.G., Opler, P.A., & Baker, I. (1978). A comparison of the amino acid complements of floral and extrafloral nectars. Botanical Gazette, 139, 322-332.

    Article  CAS  Google Scholar 

  • Baker, I., & Baker, H.G. (1982b). Some chemical constituents of floral nectars of Erythrina in relation to pollinators and systematics. Allertonia, 3, 25-37.

    CAS  Google Scholar 

  • Barbehenn, R.V., Bumgarner, S.L., Roosen, E.F., & Martin, M.M. (2001). Antioxidant de-fenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. Journal of Insect Physiology, 47, 349-357.

    Article  CAS  PubMed  Google Scholar 

  • Barclay, R.M.R. (2002). Do plants pollinated by flying fox bats (Megachiroptera) provide an extra calcium reward in their nectar? Biotropica, 34, 168-171.

    Google Scholar 

  • Barker, R.J., & Lehner, Y. (1974). Acceptance and sustenance value of naturally occurring sugars fed to newly emerged adult workers of honey bees (Apis mellifera L.). Journal of Experimental Zoology, 187, 277-286.

    Article  CAS  Google Scholar 

  • Barker, R.J., Lehner, Y., & Kunzmann, M.R. (1980). Pesticides and honey bees: nectar and pollen contamination in alfalfa treated with dimethoate. Archives of Environmental Con-tamination and Toxicology, 9, 125-133.

    Article  CAS  Google Scholar 

  • Barnes, K., Nicolson, S.W., & van Wyk, B.-E. (1995). Nectar sugar composition in Erica. Biochemical Systematics and Ecology, 23, 419-423.

    Article  CAS  Google Scholar 

  • Bergström, G., Dobson, H.E.M., & Groth, I. (1995). Spatial fragrance patterns within the flow-ers of Ranunculus acris (Ranunculaceae). Plant Systematics and Evolution, 195, 221-242.

    Article  Google Scholar 

  • Bernardello, L., Galetto, L., & Forcone, A. (1999). Floral nectar chemical composition of some species from Patagonia. II. Biochemical Systematics and Ecology, 27, 779-790.

    Article  CAS  Google Scholar 

  • Bernardello, L., Galetto, L., & Rodriguez, I.G. (1994). Reproductive biology, variability of nectar features and pollination of Combretum fruticosum (Combretaceae) in Argentina. Botanical Journal of the Linnean Society, 114, 293-308.

    Article  Google Scholar 

  • Beutler, R. (1935). Nectar. Bee World, 24, 106-116, 128-136, 156-162.

    Google Scholar 

  • Birch, G.G., & Kemp, S.E. (1989). Apparent specific volumes and tastes of amino acids. Chemical Senses, 14, 249-258.

    Article  CAS  Google Scholar 

  • Bitterman, M.E., Menzel, R., Fietz, A., & Schäfer, S. (1983). Classical conditioning of pro-boscis extension in honeybees (Apis mellifera). Journal of Comparative Psychology, 97, 107-119.

    Article  CAS  PubMed  Google Scholar 

  • Bleiweiss, R. (1998). Origin of hummingbird faunas. Biological Journal of the Linnean Soci-ety, 65, 77-97.

    Article  Google Scholar 

  • Bogdanov, S., Ruoff, K., & Persano Oddo, L. (2004). Physico-chemical methods for the char-acterisation of unifloral honeys: a review. Apidologie, 35, S4-S17.

    Article  Google Scholar 

  • Bolten, A.B., Feinsinger, P., Baker, H.G., & Baker, I. (1979). On the calculation of sugar concentration in flower nectar. Oecologia, 41, 301-304.

    Article  Google Scholar 

  • Borrell, B.J. (2004). Suction feeding in orchid bees (Apidae: Euglossini). Proceedings of the Royal Society of London B (Suppl.), 271, S164-S166.

    Article  Google Scholar 

  • Bozzo, G.G., Raghothama, K.G., & Plaxton, W.C. (2002). Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycoper-sicon esculentum) cell cultures. European Journal of Biochemistry, 269, 6278-6286.

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw, S.D., & Bradshaw, F.J. (1999). Field energetics and the estimation of pollen and nectar intake in the marsupial honey possum, Tarsipes rostratus, in heathland habitats of South-Western Australia. Journal of Comparative Physiology B, 169, 569-580.

    Article  CAS  Google Scholar 

  • Brosemer, R.W., & Veerabhadrappa, P.S. (1965). Pathway of proline oxidation in insect flight muscle. Biochemica and Biophysica Acta, 110, 102-112.

    CAS  Google Scholar 

  • Brown, J.H., & Kodric-Brown, A. (1979). Convergence, competition, and mimicry in a tem-perate community of hummingbird-pollinated flowers. Ecology, 60, 1022-1035.

    Article  Google Scholar 

  • Bruneau, A. (1996). Phylogenetic and biogeographical patterns in Erythrina (Leguminosae: Phaseoleae) as inferred from morphological and chloroplast DNA characters. Systematic Botany, 21, 587-605.

    Article  Google Scholar 

  • Bruneau, A. (1997). Evolution and homology of bird pollination syndromes in Erythrina (Leguminosae). American Journal of Botany, 84, 54-71.

    Article  Google Scholar 

  • Bubán, T., Orosz-Kovács, Z., & Farkas, Á. (2003). The nectary as the primary site of infec-tion by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Systematics and Evolution, 238, 183-194.

    Google Scholar 

  • Buchmann, S.L. (1987). The ecology of oil flowers and their bees. Annual Review of Ecology and Systematics, 18, 343-369.

    Article  Google Scholar 

  • Bukatsch, F., & Wildner, G. (1956). Determination of ascorbic acid in nectar, pollen, parts of blossoms and fruits. Phyton, 7, 37-46.

    CAS  Google Scholar 

  • Búrquez, A., & Corbet, S.A. (1998). Dynamics of production and exploitation of nectar: les-sons from Impatiens glandulifera Royle. In: B. Bahadur (Ed.), Nectary biology (pp. 130-152). Nagpur, India: Dattsons.

    Google Scholar 

  • Carroll, A.B., Pallardy, S.G., & Galen, C. (2001). Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). American Journal of Botany, 88, 438-446.

    Article  PubMed  Google Scholar 

  • Carter, C., Graham, R.A., & Thornburg, R.W. (1999). Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Molecular Biology, 41, 207-216.

    Article  CAS  PubMed  Google Scholar 

  • Carter, C., Healy, R., O’Tool, N.M., Naqvi, S.M.S., Ren, G., Paark, S., Beattie, G.A., Horner, H.T., & Thornburg, R.W. (2007). Tobacco nectaries express a novel NADPH oxidase that is implicated in the defense of floral reproductive tissues against microorganisms. Plant Physiology, 143, 389-399.

    Article  CAS  PubMed  Google Scholar 

  • Carter, C., Shafir, S., Yehonatan, L., Palmer, R.G., & Thornburg, R. (2006). A novel role for proline in plant floral nectars. Naturwissenschaften, 93, 72-79.

    Article  CAS  PubMed  Google Scholar 

  • Carter, C., & Thornburg, R.W. (2000). Tobacco Nectarin I: purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. Journal of Biological Chemistry, 275, 36726-36733.

    Article  CAS  PubMed  Google Scholar 

  • Carter, C., & Thornburg, R.W. (2004a). Is the nectar redox cycle a floral defense against microbial attack? Trends in Plant Science, 9, 320-324.

    Article  CAS  PubMed  Google Scholar 

  • Carter, C., & Thornburg, R.W. (2004b). Tobacco Nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Molecular Biol-ogy, 54, 415-425.

    Article  CAS  Google Scholar 

  • Carter, C., & Thornburg, R.W. (2004c). Tobacco Nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiology, 134, 460-469.

    Article  CAS  PubMed  Google Scholar 

  • Castellanos, M.C., Wilson, P., & Thomson, J.D. (2002). Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). American Journal of Botany, 89, 111-118.

    Article  Google Scholar 

  • Chalcoff, V.R., Aizen, M.A., & Galetto, L. (2006). Nectar concentration and composition of 26 species from the temperate forest of South America. Annals of Botany, 97, 413-421.

    Article  PubMed  Google Scholar 

  • Chandra, S., & Low, P.S. (1995). Role of phosphorylation in elicitation of the oxidative burst in cultured soybean cells. Proceedings of the National Academy of Sciences USA, 92, 4120-4123.

    Article  CAS  Google Scholar 

  • Chapotin, S.M., Holbrook, N.M., Morse, S.R., & Gutiérrez, M.V. (2003). Water relations of tropical dry forest flowers: pathways for water entry and the role of extracellular polysac-charides. Plant, Cell and Environment, 26, 623-630.

    Article  CAS  Google Scholar 

  • Chittka, L., & Schürkens, S. (2001). Successful invasion of a floral market. Nature, 411, 653.

    Google Scholar 

  • Corbet, S.A. (1978). Bee visits and the nectar of Echium vulgare L. and Sinapsis alba L. Ecological Entomology, 3, 25-37.

    Article  Google Scholar 

  • Corbet, S.A. (1990). Pollination and the weather. Israel Journal of Botany, 39, 13-30.

    Google Scholar 

  • Corbet, S.A. (2003). Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie, 34, 1-10.

    Article  CAS  Google Scholar 

  • Corbet, S.A., & Delfosse, E.S. (1984). Honeybees and the nectar of Echium plantagineum L. in south-eastern Australia. Australian Journal of Ecology, 9, 125-139.

    Article  Google Scholar 

  • Corbet, S.A., Willmer, P.G., Beament, J.W.L., Unwin, D.M., & Prŷs-Jones, O.E. (1979). Post-secretory determinants of sugar concentration in nectar. Plant, Cell and Environment, 2, 293-308.

    Article  Google Scholar 

  • Cotti, T. (1962). Ueber die quantitative Messung der Phosphataseaktivitaet in Nektarien. Berichte der Schweizerischen Botanischen Gesellschaft, 72, 306-331.

    CAS  Google Scholar 

  • Crailsheim, K., & Leonhard, B. (1997). Amino acids in honeybee worker haemolymph. Amino Acids, 13, 141-153.

    Article  CAS  Google Scholar 

  • Crane, E. (1977). Dead bees under lime trees. Bee World, 58, 129-130.

    Google Scholar 

  • Cresswell, J.E., & Galen, C. (1991). Frequency-dependent selection and adaptive surfaces for floral character combinations: the pollination of Polemonium viscosum. American Natural-ist, 138, 1342-1353.

    Article  Google Scholar 

  • Cunningham, J.P., Moore, C.J., Zalucki, M.P., & West, S.A. (2004). Learning, odour prefer-ence and flower foraging in moths. Journal of Experimental Biology, 207, 87-94.

    Article  PubMed  Google Scholar 

  • Dafni, A., Kevan, P.G., & Husband, B.C. (2005). Practical pollination biology. Cambridge, Ontario: Enviroquest.

    Google Scholar 

  • Dafni, H., Lensky, Y., & Fahn, A. (1988). Flower and nectar characteristics of nine species of Labiatae and their influence on honeybee visits. Journal of Apicultural Research, 27, 103-114.

    CAS  Google Scholar 

  • Davies, A.M.C. (1978). Proline in honey: an osmoregulatory hypothesis. Journal of Apicul-tural Research, 17, 227-233.

    CAS  Google Scholar 

  • Davis, A.R. (1997). Influence of floral visitation on nectar-sugar composition and nectary surface changes in Eucalyptus. Apidologie, 28, 27-42.

    Article  CAS  Google Scholar 

  • Davis, A.R., Pylatuik, J.D., Paradis, J.C., & Low, N.H. (1998). Nectar-carbohydrate produc-tion and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta, 205, 305-318.

    Article  CAS  PubMed  Google Scholar 

  • de la Barrera, E., & Nobel, P.S. (2004). Nectar: properties, floral aspects, and speculations on origin. Trends in Plant Science, 9, 65-69.

    Article  CAS  PubMed  Google Scholar 

  • Deachathai, S., Mahabusarakam, W., Phongpaichit, S., Taylor, W.C., Zhang, Y.J., & Yang, C.R. (2006). Phenolic compounds from the flowers of Garcinia dulcis. Phytochemistry, 67, 464-469.

    Article  CAS  PubMed  Google Scholar 

  • del Baño, M.J., Lorente, J., Castillo, J., Benavente-Garcia, O., del Río, J.A., Ortuño, A., Quirin, K.W., & Gerard, D. (2003). Phenolic diterpenes, flavones, and rosmarinic acid dis-tribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. Journal of Agricultural and Food Chemistry, 51, 4247-4253.

    Article  PubMed  CAS  Google Scholar 

  • del Pozo, J.C., Allona, I., Rubio, V., Leyva, A., de la Peña, A., Aragoncillo, C., & Paz-Ares, J. (1999). A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant Journal, 19, 579-589.

    Article  CAS  PubMed  Google Scholar 

  • Dethier, V.G. (1976). The hungry fly. Cambridge, Massachusetts: Harvard University Press. Detzel, A., & Wink, M. (1993). Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology, 4, 8-18.

    Google Scholar 

  • Devoto, M., Montaldo, N.H., & Medan, D. (2006). Mixed hummingbird: long-proboscid-fly pollination in “ornithophilous” Embothrium coccineum (Proteaceae) along a rainfall gradi-ent in Patagonia, Argentina. Austral Ecology, 31, 512-519.

    Article  Google Scholar 

  • Dress, W.J., Newell, S.J., Nastase, A.J., & Ford, J.C. (1997). Analysis of amino acids in nec-tar from pitchers of Sarracenia purpurea (Sarraceniaceae). American Journal of Botany, 84, 1701-1706.

    Article  CAS  Google Scholar 

  • Dudareva, N., D’Auria, J.C., Hee Nam, K., Raguso, R.A., & Pichersky, E. (1998). Acetyl-CoA: benzylalcohol acetyltransferase—an enzyme involved in floral scent production in Clarkia breweri. Plant Journal, 14, 297-304.

    Article  CAS  PubMed  Google Scholar 

  • Ecroyd, C.E., Franich, R.A., Kroese, H.W., & Steward, D. (1995). Volatile constituents of Dactylanthus taylorii flower nectar in relation to flower pollination and browsing by ani-mals. Phytochemistry, 40, 1387-1389.

    Article  CAS  Google Scholar 

  • Ehlers, B.K., & Olesen, J.M. (1997). The fruit-wasp route to toxic nectar in Epipactis or-chids? Flora, 192, 223-229.

    Google Scholar 

  • Elisens, W.J., & Freeman, C.E. (1988). Floral nectar sugar composition and pollinator type among New World genera in tribe Antirrhineae (Scrophulariaceae). American Journal of Botany, 75, 971-978.

    Article  CAS  Google Scholar 

  • Erhardt, A., Rusterholz, H.-P., & Stőcklin, J. (2005). Elevated carbon dioxide increases nectar production in Epilobium angustifolium L. Oecologia, 146, 311-317.

    Article  PubMed  Google Scholar 

  • Faegri, K., & van der Pijl, L. (1979). The principles of pollination ecology, 3rd edn. Oxford: Pergamon Press.

    Google Scholar 

  • Fahn, A. (2000). Structure and function of secretory cells. Advances in Botanical Research, 31, 37-75.

    Article  CAS  Google Scholar 

  • Felton, G.W., & Summers, C.B. (1995). Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29, 187-197.

    Article  CAS  PubMed  Google Scholar 

  • Ferreres, F., Andrade, P., Gil, M.I., & Tomás-Barberán, F.A. (1996). Floral nectar phenolics as biochemical markers for the botanical origin of heather honey. Zeitschrift für Le-bensmitteluntersuchung und -Forschung, 202, 40-44.

    Article  CAS  Google Scholar 

  • Fleming, P.A., Hartman Bakken, B., Lotz, C.N., & Nicolson, S.W. (2004). Concentration and temperature effects on sugar intake and preferences in a sunbird and a hummingbird. Functional Ecology, 18, 223-232.

    Article  Google Scholar 

  • Forcone, A., Galetto, L., & Bernardello, L. (1997). Floral nectar chemical composition of some species from Patagonia. Biochemical Systematics and Ecology, 25, 395-402.

    Article  CAS  Google Scholar 

  • Fowden, L., Lea, P.J., & Bell, E.A. (1979). The nonprotein amino acids of plants. Advances in Enzymology and Related Areas of Molecular Biology, 50, 117-175.

    CAS  PubMed  Google Scholar 

  • Frankie, G.W., Haber, W.A., Baker, I., & Baker, H.G. (1982). A possible chemical explana-tion for differential flower foraging by anthoporid bees among individuals of Tabebuia rosea in a neotropical dry forest. Brenesia, 20, 397-402.

    Google Scholar 

  • Freeman, C.E., & Head, K.C. (1990). Temperature and sucrose composition of floral nectars in Ipomopsis longiflora under field conditions. Southwestern Naturalist, 35, 423-426.

    Article  Google Scholar 

  • Freeman, C.E., Reid, W.H., Becvar, J.E., & Scogin, R. (1984). Similarity and apparent con-vergence in the nectar-sugar composition of some hummingbird-pollinated flowers. Botanical Gazette, 145, 132-135.

    Article  CAS  Google Scholar 

  • Freeman, C.E., & Wilken, D.H. (1987). Variation in nectar sugar composition at the intraplant level in Ipomopsis longiflora (Polemoniaceae). American Journal of Botany, 74, 1681-1689.

    Article  CAS  Google Scholar 

  • Galen, C., Sherry, R.A., & Carroll, A.B. (1999). Are flowers physiological sinks or faucets? Costs and correlates of water use by flowers of Polemonium viscosum. Oecologia, 118, 461-470.

    Article  Google Scholar 

  • Galetto, L., & Bernardello, G. (2003). Nectar sugar composition in angiosperms from Chaco and Patagonia (Argentina): an animal visitor’s matter? Plant Systematics and Evolution, 238, 69-86.

    CAS  Google Scholar 

  • Galetto, L., & Bernardello, G. (2004). Floral nectaries, nectar production dynamics and chemical composition in six Ipomoea species (Convolvulaceae) in relation to pollinators. Annals of Botany, 94, 269-280.

    Article  CAS  PubMed  Google Scholar 

  • Galetto, L., Bernardello, G., Isele, I.C., Vesprini, J., Speroni, G., & Berduc, A. (2000). Re-productive biology of Erythrina crista-galli (Fabaceae). Annals of the Missouri Botanical Garden, 87, 127-145.

    Article  Google Scholar 

  • Galetto, L., Bernardello, G., & Sosa, C.A. (1998). The relationship between floral nectar composition and visitors in Lycium (Solanaceae) from Argentina and Chile: what does it reflect? Flora, 193, 303-314.

    Google Scholar 

  • Galetto, L., & Bernardello, L.M. (1992). Extrafloral nectaries that attract ants in Bromeli-aceae: structure and nectar composition. Canadian Journal of Botany, 70, 1101-1106.

    Article  CAS  Google Scholar 

  • Gardener, M.C., & Gillman, M.P. (2001a). Analyzing variability in nectar amino acids: com-position is less variable than concentration. Journal of Chemical Ecology, 27, 2545-2558.

    Article  CAS  PubMed  Google Scholar 

  • Gardener, M.C., & Gillman, M.P. (2001b). The effects of soil fertilizer on amino acids in the floral nectar of corncockle, Agrostemma githago (Caryophyllaceae). Oikos, 92, 101-106.

    Article  Google Scholar 

  • Gardener, M.C., & Gillman, M.P. (2002). The taste of nectar—a neglected area of pollination ecology. Oikos, 98, 552-557.

    Article  Google Scholar 

  • Gass, C.L., & Roberts, W.M. (1992). The problem of temporal scale in optimization: three contrasting views of hummingbird visits to flowers. American Naturalist, 140, 829-853.

    Article  CAS  PubMed  Google Scholar 

  • Gil, M.I., Ferreres, F., Ortiz, A., Subra, E., & Tomás-Barberán, F.A. (1995). Plant phenolic metabolites and floral origin of rosemary honey. Journal of Agricultural and Food Chemistry, 43, 2833-2838.

    Article  CAS  Google Scholar 

  • Gottsberger, G., Arnold, T., & Linskens, H.F. (1990). Variation in floral nectar amino acids with aging of flowers, pollen contamination, and flower damage. Israel Journal of Botany, 39, 167-176.

    CAS  Google Scholar 

  • Gottsberger, G., Schrauwen, J., & Linskens, H.F. (1984). Amino acids and sugars in nectar, and their putative evolutionary significance. Plant Systematics and Evolution, 145, 55-77.

    Article  CAS  Google Scholar 

  • Grant, V. (1994). Historical development of ornithophily in the western North American flora. Proceedings of the National Academy of Sciences USA, 91, 10407-10411.

    Article  CAS  Google Scholar 

  • Griebel, C., & Hess, G. (1940). The vitamin C content of flower nectar of certain Labiatae. Zeitschrift für Untersuchung der Lebensmittel, 79, 168-171.

    Article  CAS  Google Scholar 

  • Gryj, E., Martínez del Rio, C., & Baker, I. (1990). Avian pollination and nectar use in Com-bretum fruticosum (Loefl.). Biotropica, 22, 266-271.

    Article  Google Scholar 

  • Guerrant, E.O., & Fiedler, P.L. (1981). Flower defenses against nectar-pilferage by ants. Biotropica (suppl. Reproductive Botany), 13, 25-33.

    Google Scholar 

  • Hagler, J.R., & Buchmann, S.L. (1993). Honey bee (Hymenoptera: Apidae) foraging re-sponses to phenolic-rich nectars. Journal of the Kansas Entomological Society, 66, 223-230.

    Google Scholar 

  • Hagler, J.R., Cohen, A.C., & Loper, G.M. (1990). Production and composition of onion nec-tar and honey bee (Hymenoptera: Apidae) foraging activity in Arizona. Environmental Entomology, 19, 327-331.

    Google Scholar 

  • Halliwell, B., & Gutteridge, J.M.C. (1999). Free radicals in biology and medicine. New York: Oxford University Press.

    Google Scholar 

  • Hammer, M., & Menzel, R. (1995). Learning and memory in the honeybee. Journal of Neuro-science, 15, 1617-1630.

    CAS  Google Scholar 

  • Hanny, B.W., & Elmore, C.D. (1974). Amino acid composition of cotton nectar. Journal of Agricultural and Food Chemistry, 22, 476-478.

    Article  CAS  Google Scholar 

  • Hansen, D.M., Olesen, J.M., Mione, T., Johnson, S.D., & Muller, C.B. (2007). Coloured nectar: distribution, ecology, and evolution of an enigmatic floral trait. Biological Reviews, 82, 83-111.

    Article  PubMed  Google Scholar 

  • Hansen, K., Wacht, S., Seebauer, H., & Schnuch, M. (1998). New aspects of chemoreception in flies. Annals of the New York Academy of Sciences, 855, 143-147.

    Article  CAS  PubMed  Google Scholar 

  • Harder, L.D. (1986). Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia, 69, 309-315.

    Article  Google Scholar 

  • Hazslinsky, B. (1956). Poisonous honey from deadly nightshade. Zeitschrift für Bienenfor-schung, 3, 93-96.

    Google Scholar 

  • Heil, M., Rattke, J., & Boland, W. (2005). Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science, 308, 560-563.

    Article  CAS  PubMed  Google Scholar 

  • Heinrich, G. (1989). Analysis of cations in nectars by means of a laser microprobe mass ana-lyser (LAMMA). Beiträge zur Biologie der Pflanzen, 64, 293-308.

    Google Scholar 

  • Herrera, C.M., Pérez, R., & Alonso, C. (2006). Extreme intraplant variation in nectar sugar com-position in an insect-pollinated perennial herb. American Journal of Botany, 93, 575-581.

    Article  Google Scholar 

  • Heyneman, A.J. (1983). Optimal sugar concentrations of floral nectars: dependence on sugar intake efficiency and foraging costs. Oecologia, 60, 198-213.

    Article  Google Scholar 

  • Hiebert, S.M., & Calder, W.A. (1983). Sodium, potassium, and chloride in floral nectars: energy-free contributions to refractive index and salt balance. Ecology, 64, 399-402.

    Article  CAS  Google Scholar 

  • Hilder, V.A., Powell, K.S., Gatehouse, A.M.R., Gatehouse, J.A., Gatehouse, L.N., Shi, Y., Hamilton, W.D.O., Merryweather, A., Newell, C.A., Timans, J.C., Peumans, W.J., Van Damme, E., & Boulter, D. (1995). Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Research, 4, 18-25.

    Article  CAS  Google Scholar 

  • Holl, K.D. (1995). Nectar resources and their influence on butterfly communities on re-claimed coal surface mines. Restoration Ecology, 3, 76-85.

    Article  Google Scholar 

  • Honda, K., Ômura, H., & Hayashi, N. (1998). Identification of floral volatiles from Ligustrum japonicum that stimulate flower-visiting by cabbage buttterfly, Pieris rapae. Journal of Chemical Ecology, 24, 2167-2180.

    Article  CAS  Google Scholar 

  • Horner, H.T., Healy, R.A., Ren, G., Fritz, D., Seames, C., & Thornburg, R.W. (2007). Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. American Journal of Botany, 94, 12-24.

    Article  CAS  Google Scholar 

  • Hrassnigg, N., Leonhard, B., & Crailsheim, K. (2003). Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.). Amino Acids, 24, 205-212.

    CAS  PubMed  Google Scholar 

  • Huang, S.-Q., Takahashi, Y., & Dafni, A. (2002). Why does the flower stalk of Pulsatilla cernua (Ranunculaceae) bend during anthesis? American Journal of Botany, 89, 1599-1603.

    Article  Google Scholar 

  • Inouye, D.W., Favre, N.D., Lanum, J.A., Levine, D.M., Meyers, J.B., Roberts, M.S., Tsao, F.C., & Wang, Y.-Y. (1980). The effects of nonsugar nectar constituents on estimates of nectar energy content. Ecology, 61, 992-996.

    Article  CAS  Google Scholar 

  • Inouye, D.W., & Waller, G.D. (1984). Responses of honeybees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology, 65, 618-625.

    Article  CAS  Google Scholar 

  • Jackson, S., & Nicolson, S.W. (2002). Xylose as a nectar sugar: from biochemistry to ecol-ogy. Comparative Biochemistry and Physiology B, 131, 613-620.

    Article  Google Scholar 

  • Jakubska, A., Przado, D., Steininger, M., Aniol-Kwiatkowska, J., & Kadej, M. (2005). Whydo pollinators become “sluggish”? Nectar chemical constituents from Epipactis helle-borine(L.) Crantz(Orchidaceae). Applied Ecology and Environmental Research,3,29-38.

    Google Scholar 

  • Jaycox, E.R. (1964). Effect on honeybees of nectar from systemic insecticide-treated plants. Journal of Economic Entomology, 57, 31-35.

    CAS  Google Scholar 

  • Jeffrey, D.C., Arditti, J., & Koopowitz, H. (1970). Sugar content in floral and extrafloral exu-dates of orchids: pollination, myrmecology and chemotaxonomy implication. New Phytologist, 69, 187-195.

    Article  Google Scholar 

  • Johnson, S.A., Nicolson, S.W., & Jackson, S. (2006a). Nectar xylose metabolism in a rodent pollinator (Aethomys namaquensis): defining the role of gastrointestinal microflora using 14C-labelled xylose. Physiological and Biochemical Zoology, 79, 159-168.

    Article  CAS  Google Scholar 

  • Johnson, S.D., Hargreaves, A.L., & Brown, M. (2006b). Dark bitter-tasting nectar functions as a filter of flower visitors in a bird-pollinated plant. Ecology, 87, 2709-2716.

    Article  Google Scholar 

  • Johnson, S.D., Pauw, A., & Midgley, J. (2001). Rodent pollination in the African lily Mas-sonia depressa (Hyacinthaceae). American Journal of Botany, 88, 1768-1773.

    Article  Google Scholar 

  • Juergens, A. (2004). Nectar sugar composition and floral scent compounds of diurnal and nocturnal Conophytum species (Aizoaceae). South African Journal of Botany, 70, 191-205.

    CAS  Google Scholar 

  • Kaczorowski, R.L., Gardener, M.C., & Holtsford, T.P. (2005). Nectar traits in Nicotiana sec-tion Alatae (Solanaceae) in relation to floral traits, pollinators, and mating system. American Journal of Botany, 92, 1270-1283.

    Article  Google Scholar 

  • Kearns, C.A., & Inouye, D.W. (1993). Techniques for pollination biologists. Boulder, Colo-rado: University Press of Colorado.

    Google Scholar 

  • Kevan, P.G. (1976). Fluorescent nectar. Science, 194, 341-342.

    Article  PubMed  Google Scholar 

  • Kingsolver, J.G., & Daniel, T.L. (1983). Mechanical determinants of nectar feeding strategy in hummingbirds: energetics, tongue morphology, and licking behavior. Oecologia, 60, 214-226.

    Article  Google Scholar 

  • Kingsolver, J.G., & Daniel, T.L. (1995). Mechanics of food handling by fluid-feeding insects. In: R.F. Chapman & G. de Boer (Eds.), (pp. 32-73). Regulatory mechanisms in insect feeding New York: Chapman & Hall.

    Google Scholar 

  • Kleijn, D., & Snoeijing, G.I.J. (1997). Field boundary vegetation and the effects of agro-chemical drift: botanical change caused by low levels of herbicide and fertilizer. Journal of Applied Ecology, 34, 1413-1425.

    Article  Google Scholar 

  • Klinkhamer, P.G.L., & De Jong, T.J. (1993). Attractiveness to pollinators: a plant’s dilemma. Oikos, 66, 180-184.

    Article  Google Scholar 

  • Knudsen, J.T., Tollsten, L., & Bergstrőm, L.G. (1993). Floral scents. A checklist of volatile compounds isolated by head-space techniques. Phytochemistry, 33, 253-280.

    Article  CAS  Google Scholar 

  • Koptur, S. (1994). Floral and extrafloral nectars of Costa Rican Inga trees: a comparison of their constituents and composition. Biotropica, 26, 276-284.

    Article  Google Scholar 

  • Krenn, H.W., Plant, J.D., & Szucsich, N.U. (2005). Mouthparts of flower-visiting insects. Arthropod Structure and Development, 34, 1-40.

    Article  Google Scholar 

  • Kronestedt-Robards, E.C., Greger, M., & Robards, A.W. (1989). The nectar of the Strelitzia reginae flower. Physiologia Plantarum, 77, 341-346.

    Article  CAS  Google Scholar 

  • Landolt, P.J., & Lenczewski, B. (1993). Lack of evidence for the toxic nectar hypothesis: a plant alkaloid did not deter nectar feeding by Lepidoptera. Florida Entomologist, 76, 556-566.

    Google Scholar 

  • Langenberger, M.W., & Davis, A.R. (2002). Temporal changes in floral nectar production, reabsorption and composition associated with dichogamy in annual caraway (Carum carvi; Apiaceae). American Journal of Botany, 89, 1588-1598.

    Article  Google Scholar 

  • Lanza, J., Smith, G.C., Sack, S., & Cash, A. (1995). Variation in nectar volume and composi-tion of Impatiens capensis at the individual, plant, and population levels. Oecologia, 102, 113-119.

    Google Scholar 

  • Leiss, K.A., & Klinkhamer, P.G.L. (2005). Genotype by environment interactions in the nec-tar production of Echium vulgare. Functional Ecology, 19, 454-459.

    Article  Google Scholar 

  • Li, G., Bishop, K.J., & Hall, T.C. (2001). De novo activation of the beta-phaseolin promoter by phosphatase or protein synthesis inhibitors. Journal of Biological Chemistry, 276, 2062-2068.

    CAS  PubMed  Google Scholar 

  • Liu, F., He, J., & Fu, W. (2005). Highly controlled nest homeostasis of honey bees helps de-activate phenolics in nectar. Naturwissenschaften, 92, 297-299.

    Article  CAS  PubMed  Google Scholar 

  • Loper, G.M., Waller, G.D., & Berdel, R.L. (1976). Effect of flower age on sucrose content in nectar of citrus. HortScience, 11, 416-417.

    CAS  Google Scholar 

  • Lord, K.A., May, M.A., & Stevenson, J.H. (1968). The secretion of the systemic insecticides dimethoate and phorate into nectar. Annals of Applied Biology, 61, 19-27.

    Article  CAS  PubMed  Google Scholar 

  • Lotz, C.N., & Nicolson, S.W. (1996). Sugar preferences of a nectarivorous passerine bird, the lesser double-collared sunbird (Nectarinia chalybea). Functional Ecology, 10, 360-365.

    Article  Google Scholar 

  • Lüttge, U. (1961). Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion. I. Planta, 56, 189-212.

    Article  Google Scholar 

  • Lüttge, U. (1962). Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion. II. Planta, 59, 108-114.

    Article  Google Scholar 

  • Martínez del Rio, C., Baker, H.G., & Baker, I. (1992). Ecological and evolutionary implica-tions of digestive processes: bird preferences and the sugar constituents of floral nectar and fruit pulp. Experientia, 48, 544-551.

    Article  Google Scholar 

  • Martínez del Rio, C., Schondube, J.E., McWhorter, T.J., & Herrera, L.G. (2001). Intake re-sponses in nectar feeding birds: digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. American Zoologist, 41, 902-915.

    Article  Google Scholar 

  • Martins, D.J., & Johnson, S.D. (2007). Hawkmoth pollination of Aerangis and Rangaeris (Orchidaceae) in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. American Journal of Botany, in press.

    Google Scholar 

  • Masters, A.R. (1991). Dual role of pyrrolizidine alkaloids in nectar. Journal of Chemical Ecology, 17, 195-205.

    Article  CAS  Google Scholar 

  • Mathlouthi, M., & Génotelle, J. (1995). Rheological properties of sucrose solutions and sus-pensions. In: M. Mathlouthi & P. Reiser (Ed.), Sucrose properties and applications (pp. 126-154). London: Blackie Academic & Professional.

    Google Scholar 

  • McKenna, M.A., & Thomson, J.D. (1988). A technique for sampling and measuring small amounts of floral nectar. Ecology, 69, 1306-1307.

    Article  Google Scholar 

  • McTavish, H.S., Davies, N.W., & Menary, R.C. (2000). Emission of volatiles from brown Boronia flowers: some comparative observations. Annals of Botany, 86, 347-354.

    Article  CAS  Google Scholar 

  • Metzler, D.E. (2003). Biochemistry: the chemical reactions of living cells, 2nd edn. San Diego, California: Academic Press.

    Google Scholar 

  • Micheu, S., Crailsheim, K., & Leonhard, B. (2000). Importance of proline and other amino acids during honeybee flight—Apis mellifera carnica (Pollmann). Amino Acids, 18, 157-175.

    Article  CAS  PubMed  Google Scholar 

  • Mullin, C.A., Alfatafta, A.A., Harman, J.L., Serino, A.A., & Everett, S.L. (1991). Corn root-worm feeding on sunflower and other Compositae: influence of floral terpenoid and phenolic factors. In: P.A. Hedin (Ed.), Naturally occurring pest bioregulators (pp. 278-292). Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Naef, R., Jaquier, A., Velluz, A., & Bachofen, B. (2004). From the linden flower to linden honey—volatile constituents of linden nectar, the extract of bee-stomach and ripe honey. Chemistry and Biodiversity, 1, 1870-1879.

    Article  CAS  PubMed  Google Scholar 

  • Naqvi, S.M.S., Harper, A., Carter, C., Ren, G., Guirgis, A., York, W.S., & Thornburg, R.W. (2005). Nectarin IV, a potent endoglucanase inhibitor secreted into the nectar of ornamen-tal tobacco plants. Isolation, cloning and characterization. Plant Physiology, 139, 1389-1400.

    Article  PubMed  CAS  Google Scholar 

  • Natale, D., Mattiacci, L., Hern, A., Pasqualini, E., & Dorn, S. (2003). Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bulletin of Entomo-logical Research, 93, 335-342.

    CAS  Google Scholar 

  • Nepi, M., Guarnieri, M., & Pacini, E. (2001). Nectar secretion, reabsorption, and sugar com-position in male and female flowers of Cucurbita pepo. International Journal of Plant Sciences, 162, 353-358.

    Article  CAS  Google Scholar 

  • Nicolson, S.W. (1990). Osmoregulation in a nectar-feeding insect, the carpenter bee Xylocopa capitata: water excess and ion conservation. Physiological Entomology, 15, 433-441.

    Google Scholar 

  • Nicolson, S.W. (1994). Eucalyptus nectar: production, availability, composition and osmotic consequences for the larva of the eucalypt nectar fly, Drosophila flavohirta. South African Journal of Science, 90, 75-79.

    Google Scholar 

  • Nicolson, S.W. (1998). The importance of osmosis in nectar secretion and its consumption by insects. American Zoologist, 38, 418-425.

    Google Scholar 

  • Nicolson, S.W. (2002). Pollination by passerine birds: why are the nectars so dilute? Com-parative Biochemistry and Physiology B, 131, 645-652.

    Article  Google Scholar 

  • Nicolson, S.W. (2007). Nectar consumers. In: S.W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 289-342). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Nicolson, S.W., & Fleming, P.A. (2003). Nectar as food for birds: the physiological conse-quences of drinking dilute sugar solutions. Plant Systematics and Evolution, 238, 139-153.

    Google Scholar 

  • Nicolson, S.W., & Nepi, M. (2005). Dilute nectar in dry atmospheres: nectar secretion pat-terns in Aloe castanea (Asphodelaceae). International Journal of Plant Sciences, 166, 227-233.

    Article  Google Scholar 

  • Nicolson, S.W., & van Wyk, B.-E. (1998). Nectar sugars in Proteaceae: patterns and proc-esses. Australian Journal of Botany, 46, 489-504.

    Article  Google Scholar 

  • Nicolson, S.W., & W.-Worswick, P.V. (1990). Sodium and potassium concentrations in floral nectars in relation to foraging by honey bees. South African Journal of Zoology, 25, 93-96.

    Google Scholar 

  • Nobel, P.S. (1977). Water relations of flowering of Agave deserti. Botanical Gazette, 138, 1-6.

    Article  Google Scholar 

  • Olesen, J.M., Rønsted, N., Tolderlund, U., Cornett, C., Mølgaard, P., Madsen, J., Jones, C.G., & Olsen, C.E. (1998). Mauritian red nectar remains a mystery. Nature, 393, 529-529.

    Article  CAS  Google Scholar 

  • Omand, E., & Dethier, V.G. (1969). An electrophysiological analysis of the action of carbo-hydrates on the sugar receptor of the blowfly. Proceedings of the National Academy of Sciences USA, 62, 136-143.

    Article  CAS  Google Scholar 

  • Ordano, M., & Ornelas, J.F. (2004). Generous-like flowers: nectar production in two epi-phytic bromeliads and a meta-analysis of removal effects. Oecologia, 140, 495-505.

    Article  PubMed  Google Scholar 

  • Ozoe, Y., Akamatsu, M., Higata, T., Ikeda, I., Mochida, K., Koike, K., Ohmoto, T., & Nikaido, T. (1999). Interactions of picrodendrins and related terpenoids with ionotropic GABA receptors of mammals and insects. Pesticide Science, 55, 665-666.

    Article  CAS  Google Scholar 

  • Pacini, E., & Nepi, M. (2007). Nectar production and presentation. In: S.W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 167-214). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Passreiter, C.M., & Isman, M.B. (1997). Antifeedant bioactivity of sesquiterpene lactones from Neurolaena lobata and their antagonism by gamma-aminobutyric acid. Biochemical Systematics and Ecology, 25, 371-377.

    Article  CAS  Google Scholar 

  • Pate, J., Shedley, E., Arthur, D., & Adams, M. (1998). Spatial and temporal variations in phloem sap composition of plantation-grown Eucalyptus globulus. Oecologia, 117, 312-322.

    Article  Google Scholar 

  • Pate, J.S., Peoples, M.B., Storer, P.J., & Atkins, C.A. (1985). The extrafloral nectaries of cowpea (Vigna unguiculata (L.) Walp.) II. Nectar composition, origin of nectar solutes, and nectary functioning. Planta, 166, 28-38.

    Article  CAS  Google Scholar 

  • Patiño, S., & Grace, J. (2002). The cooling of convolvulaceous flowers in a tropical environ-ment. Plant, Cell and Environment, 25, 41-51.

    Article  Google Scholar 

  • Paul, J., & Roces, F. (2003). Fluid intake rates in ants correlate with their feeding habits. Journal of Insect Physiology, 49, 347-357.

    Article  CAS  PubMed  Google Scholar 

  • Percival, M.S. (1961). Types of nectar in angiosperms. New Phytologist, 60, 235-281.

    Article  Google Scholar 

  • Pérez-Giraldo, C., Cruz-Villalón, G., Sánchez-Silos, R., Martínez-Rubio, R., Blanco, M.T., & Gómez-García, A.C. (2003). In vitro activity of allicin against Staphylococcus epidermiis and influence of subinhibitory concentrations on biofilm formation. Journal of Applied Microbiology, 95, 709-711.

    Article  PubMed  CAS  Google Scholar 

  • Perret, M., Chautems, A., Spichiger, R., Kite, G., & Savolainen, V. (2003). Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS. American Journal of Botany, 90, 445-460.

    Article  CAS  Google Scholar 

  • Perret, M., Chautems, A., Spichiger, R., Peixoto, M., & Savolainen, V. (2001). Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae). Annals of Botany, 87, 267-273.

    Article  CAS  Google Scholar 

  • Petanidou, T. (2005). Sugars in Mediterranean floral nectars: an ecological and evolutionary approach. Journal of Chemical Ecology, 31, 1065-1088.

    Article  CAS  PubMed  Google Scholar 

  • Petanidou, T. (2007). Ecological and evolutionary aspects of floral nectars in Mediterranean habitats. In: S.W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 343-375). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Petanidou, T., Goethals, V., & Smets, E. (2000). Nectary structure of Labiatae in relation to their nectar secretion and characteristics in a Mediterranean shrub community—does flowering time matter? Plant Systematics and Evolution, 225, 103-118.

    Article  Google Scholar 

  • Petanidou, T., van Laere, A., Ellis, W.N., & Smets, E. (2006). What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos, 115, 155-169.

    Article  CAS  Google Scholar 

  • Petanidou, T., Van Laere, A.J., & Smets, E. (1996). Change in floral nectar components from fresh to senescent flowers of Capparis spinosa L.(Capparidaceae), a nocturnally flowering Mediterranean shrub. Plant Systematics and Evolution, 199, 79-92.

    Article  Google Scholar 

  • Petit, S., & Freeman, C.E. (1997). Nectar production of two sympatric species of columnar cacti. Biotropica, 29, 175-183.

    Article  Google Scholar 

  • Peumans, W.J., Smeets, K., Van Nerum, K., Van Leuven, F., & Van Damme, E.J.M. (1997). Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta, 201, 298-302.

    Article  CAS  PubMed  Google Scholar 

  • Pichersky, E., & Gershenzon, J. (2002). The formation and function of plant volatiles: per-fumes for pollinator attraction and defense. Current Opinion in Plant Biology, 5, 237-243.

    Article  CAS  PubMed  Google Scholar 

  • Pivnick, K.A., & McNeil, J.N. (1985). Effects of nectar concentration on butterfly feeding: measured feeding rates for Thymelicus lineola (Lepidoptera: Hesperiidae) and a general feeding model for adult Lepidoptera. Oecologia, 66, 226-237.

    Google Scholar 

  • Plepys, D., Ibarra, F., Francke, W., & Lőfstedt, C. (2002). Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioral and electro-physiological responses to floral volatiles. Oikos, 99, 75-82.

    Article  CAS  Google Scholar 

  • Plowright, R.C. (1981). Nectar production in the boreal forest lily Clintonia borealis. Cana-dian Journal of Botany, 59, 156-160.

    Google Scholar 

  • Plowright, R.C. (1987). Corolla depth and nectar concentration: an experimental study. Cana-dian Journal of Botany, 65, 1011-1013.

    Article  Google Scholar 

  • Powell, K.S., Gatehouse, A.M.R., Hilder, V.A., Van Damme, E.J.M., Peumans, W.J., Boon-jawat, J., Horsham, K., & Gatehouse, J.A. (1995). Different antimetabolic effects of related lectins towards nymphal stages of Nilaparvata lugens. Entomologia Experimentalis et Applicata, 75, 61-65.

    Article  CAS  Google Scholar 

  • Pressey, R. (1996). Polygalacturonase inhibitors in bean pods. Phytochemistry, 42, 1267-1270.

    Article  CAS  PubMed  Google Scholar 

  • Prince, R.C., & Gunson, D.E. (1987). Superoxide production in neutrophils. Trends in Bio-chemical Science, 12, 86-87.

    Article  CAS  Google Scholar 

  • Proctor, M., Yeo, P., & Lack, A. (1996). The natural history of pollination. London: Harper-Collins.

    Google Scholar 

  • Pryce-Jones, J. (1944). Some problems associated with nectar, pollen, and honey. Proceed-ings of the Linnean Society of London, 1944, 129-174.

    Google Scholar 

  • Prŷs-Jones, O.E., & Willmer, P.G. (1992). The biology of alkaline nectar in the purple tooth-wort (Lathraea clandestina): ground level defences. Biological Journal of the Linnean Society, 45, 373-388.

    Article  Google Scholar 

  • Pyke, G.H., & Waser, N.M. (1981). The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica, 13, 260-270.

    Article  Google Scholar 

  • Rabhé, Y., Sauvion, N., Febvay, G., Peumans, W.J., & Gatehouse, A.M.R. (1995). Toxicity of lectins and processing of injested proteins in the pea aphid Acyrthosiphon pisum. Ento-mologia Experimentalis et Applicata, 76, 143-155.

    Article  Google Scholar 

  • Radzevenchuk, I.F., Voronina, A.I., Zaitseva, Z.M., & Lukish, N.I. (1976). Effect of phenol compounds, manganese, boron and cobalt on the [berry] yield and composition of the nec-tar of black currant flowers. Agrokhimiya, 6, 105-107.

    Google Scholar 

  • Raguso, R.A. (2004). Why are some floral nectars scented? Ecology, 85, 1486-1494.

    Article  Google Scholar 

  • Raguso, R.A., Light, D.M., & Pickersky, E. (1996). Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Ona-graceae) and other moth-pollinated flowers. Journal of Chemical Ecology, 22, 1735-1766.

    Article  CAS  Google Scholar 

  • Restrepo, S., Myers, K.L., del Pozo, O., Martin, G.B., Hart, A.L., Buell, C.R., Fry, W.E., & Smart, C.D. (2005). Gene profiling of a compatible interaction between Phytophthora in-festans and Solanum tuberosum suggests a role for carbonic anhydrase. Molecular Plant-Microbe Interactions, 18, 913-922.

    Article  CAS  PubMed  Google Scholar 

  • Rhoades, D.F., & Bergdahl, J.C. (1981). Adaptive significance of toxic nectar. American Naturalist, 117, 798-803.

    Article  Google Scholar 

  • Robards, A.W., & Oates, K. (1986). X-ray microanalysis of ion distribution in Abutilon nec-tary hairs. Journal of Experimental Botany, 37, 940-946.

    Article  CAS  Google Scholar 

  • Roubik, D.W., & Buchmann, S.L. (1984). Nectar selection by Melipona and Apis mellifera (Hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical for-est. Oecologia, 61, 1-10.

    Article  Google Scholar 

  • Roulston, T.H., Cane, J.H., & Buchmann, S.L. (2000). What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecological Mono-graphs, 70, 617-643.

    Google Scholar 

  • Rowley, D.A., & Halliwell, B. (1983). Formation of hydroxyl radicals from hydrogen perox-ide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease. Clinical Science (London), 64, 649-653.

    CAS  Google Scholar 

  • Rusterholz, H.P., & Erhardt, A. (1998). Effects of elevated CO2 on flowering phenology and nectar production of nectar plants important for butterflies of calcareous grasslands. Oecologia, 113, 341-349.

    Article  Google Scholar 

  • Sandhu, D.K., & Waraich, M.K. (1985). Yeasts associated with pollinating bees and flower nectar. Microbial Ecology, 11, 51-58.

    Article  Google Scholar 

  • Sazima, M., Vogel, S., do Prado, A.L., de Oliveira, D.M., Franz, G., & Sazima, I. (2001). The sweet jelly of Combretum lanceolatum flowers (Combretaceae): a cornucopia resource for bird pollinators in the Pantanal, western Brazil. Plant Systematics and Evolution, 227, 195-208.

    Article  Google Scholar 

  • Schwerdtfeger, M. (1996). Die Nektarzusammensetzung der Asteridae und ihre Beziehung zu Blütenökologie und Systematik. Dissertationes Botanicae, 264, 95 pp. Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Scobell, S.A., & Scott, P.E. (2002). Visitors and floral traits of a hummingbird-adapted cactus (Echinocereus coccineus) show only minor variation along an elevational gradient. Ameri-can Midland Naturalist, 147, 1-15.

    Article  Google Scholar 

  • Scogin, R. (1979). Nectar constituents in the genus Fremontia (Sterculiaceae): sugars, flavon-oids, and proteins. Botanical Gazette, 140, 29-31.

    Article  CAS  Google Scholar 

  • Seigler, D., Simpson, B.B., Martin, C., & Neff, J.L. (1978). Free 3-acetoxyfatty acids in floral glands of Krameria species. Phytochemistry, 17, 995-996.

    Article  CAS  Google Scholar 

  • Shiraishi, A., & Kuwabara, M. (1970). The effects of amino acids on the labellar hair chemo-sensory cells of the fly. Journal of General Physiology, 56, 768-782.

    Article  CAS  PubMed  Google Scholar 

  • Singaravelan, N., Nee’man, G., Inbar, M., & Izhaki, I. (2005). Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. Journal of Chemical Ecology, 31, 2791-2804.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G.F., Van Wyk, B.-E., Steyn, E.M.A., & Breuer, I. (2001). Infrageneric classification of Haworthia (Aloaceae): perspectives from nectar sugar analysis. Systematics and Geog-raphy of Plants, 71, 391-397.

    Article  Google Scholar 

  • Smith, L.L., Lanza, J., & Smith, G.C. (1990). Amino acid concentrations in extrafloral nectar of Impatiens sultani increase after simulated herbivory. Ecology, 71, 107-115.

    Article  CAS  Google Scholar 

  • Sols, A., Cadenas, E., & Alvarado, F. (1960). Enzymatic basis of mannose toxicity in honey bees. Science, 131, 297-298.

    Article  CAS  PubMed  Google Scholar 

  • Sroka, Z., Cisowski, W., Seredyńska, M., & Luczkiewicz, M. (2001). Phenolic extracts from meadowsweet and hawthorn flowers have antioxidative properties. Zeitung für Naturfor-schung C, 56, 739-744.

    CAS  Google Scholar 

  • Stebbins, G.L. (1989). Adaptive shifts toward hummingbird pollination. In: J.H. Bock, & Y.B. Linhart (Eds.), The evolutionary ecology of plants (pp. 39-60). Boulder, Colorado: Westview Press.

    Google Scholar 

  • Stephenson, A.G. (1982). Iridoid glycosides in the nectar of Catalpa speciosa are unpalatable to nectar thieves. Journal of Chemical Ecology, 8, 1025-1034.

    Article  CAS  Google Scholar 

  • Stiles, F.G. (1981). Geographical aspects of bird-flower coevolution, with particular reference to Central America. Annals of the Missouri Botanical Garden, 68, 323-351.

    Article  Google Scholar 

  • Stiles, F.G., & Freeman, C.E. (1993). Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica, 25, 191-205.

    Article  Google Scholar 

  • Stone, T.B., Thompson, A.C., & Pitre, H.N. (1985). Analysis of lipids in cotton extrafloral nectar. Journal of Entomological Science, 20, 422-428.

    CAS  Google Scholar 

  • Sugiyama, J., Tokuoka, K., Suh, S.-O., Hirata, A., & Komagata, K. (1991). Sympodiomycop-sis: a new yeast-like anamorph genus with basidiomycetous nature from orchid nectar. Antonie Van Leeuwenhoek, 59, 95-108.

    Article  CAS  PubMed  Google Scholar 

  • Swain, T. (1977). Secondary compounds as protective agents. Annual Review of Plant Physi-ology, 28, 479-501.

    Article  CAS  Google Scholar 

  • Tadey, M., & Aizen, M.A. (2001). Why do flowers of a hummingbird-pollinated mistletoe face down? Functional Ecology, 15, 782-790.

    Article  Google Scholar 

  • Tholl, D., Chen, F., Gershenzon, J., & Pichersky, E. (2004). Arabidopsis thaliana, a model system for investigating volatile terpene biosynthesis, regulation, and function. In: J.T. Romeo (Ed.), Secondary metabolism in model systems (pp. 1-18). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Thornburg, R.W., Carter, C., Powell, A., Mittler, R., Rizhsky, L., & Horner, H.T. (2003). A major function of the tobacco floral nectary is defense against microbial attack. Plant Sys-tematics and Evolution, 238, 211-218.

    Google Scholar 

  • Thorp, R.W., Briggs, D.L., Estes, J.R., & Erickson, E.H. (1975). Nectar fluorescence under ultraviolet irradiation. Science, 189, 476-478.

    Article  PubMed  Google Scholar 

  • Torres, C., & Galetto, L. (2002). Are nectar sugar composition and corolla tube length related to the diversity of insects that visit Asteraceae flowers? Plant Biology, 4, 360-366.

    Article  CAS  Google Scholar 

  • van Wyk, B.-E., Whitehead, C.S., Glen, H.F., Hardy, D.S., van Jaarsveld, E.J., & Smith, G.F. (1993). Nectar sugar composition in the subfamily Alooideae (Asphodelaceae). Biochemi-cal Systematics and Ecology, 21, 249-253.

    Article  CAS  Google Scholar 

  • Vesprini, J.L., Nepi, M., & Pacini, E. (1999). Nectary structure, nectar secretion patterns and nectar composition in two Helleborus species. Plant Biology, 1, 560-568.

    Article  CAS  Google Scholar 

  • Villarreal, A.G., & Freeman, C.E. (1990). Effects of temperature and water stress on some floral nectar characteristics in Ipomopsis longiflora (Polemoniaceae) under controlled con-ditions. Botanical Gazette, 151, 5-9.

    Article  Google Scholar 

  • Vogel, S. (1971). Pollination of oil-producing flowers by oil-collecting bees. Naturwissen-schaften, 58, 58.

    Google Scholar 

  • Völkl, W., Woodring, J., Fischer, M., Lorenz, M.W., & Hoffmann, K.H. (1999). Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia, 118, 483-491.

    Article  Google Scholar 

  • Wacht, S., Lunau, K., & Hansen, K. (2000). Chemosensory control of pollen ingestion in the hoverfly Eristalis tenax by labellar taste hairs. Journal of Comparative Physiology A, 186, 193-203.

    Article  CAS  Google Scholar 

  • Waller, G.D., Carpenter, E.W., & Ziehl, O.A. (1972). Potassium in onion nectar and its prob-able effect on attractiveness of onion flowers to honey bees. Journal of the American Society for Horticultural Science, 97, 535-539.

    CAS  Google Scholar 

  • Weast, R.C., (Ed.) (1980). CRC handbook of chemistry and physics, 60th edn. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Weller, S.G., & Sakai, A.K. (1999). Using phylogenetic approaches for the analysis of plant breeding system evolution. Annual Review of Ecology and Systematics, 30, 167-199.

    Article  Google Scholar 

  • Williams, N.M., & Thomson, J.D. (1998). Trapline foraging by bumble bees: III. Temporal patterns of visitation and foraging success at single plants. Behavioral Ecology, 9, 612-621.

    Article  Google Scholar 

  • Willmer, P.G. (1980). The effects of insect visitors on nectar constituents in temperate plants. Oecologia, 47, 270-277.

    Article  Google Scholar 

  • Wolff, D. (2006). Nectar sugar composition and volumes of 47 species of Gentianales from a southern Ecuadorian montane forest. Annals of Botany, 97, 767-777.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt, R., Broyles, S.B., & Derda, G.S. (1992). Environmental influences on nectar produc-tion in milkweeds (Asclepias syriaca and A. exaltata). American Journal of Botany, 79, 636-642.

    Article  Google Scholar 

  • Zalewski, W. (1966). Phosphatases in honey. Pszczelnicze Zeszyty Naukowe, 9, 1-34.

    Google Scholar 

  • Zauralov, O.A. (1969). Oxidizing enzymes in nectaries and nectar. Trudy Nauchno-Issledovatel’skogo Instituta Pchelovodstva, 1969, 197-225.

    Google Scholar 

  • Ziegler, H. (1956). Untersuchungen über die Leitung und Sekretion der Assimilate. Planta, 47, 447-500.

    Article  CAS  Google Scholar 

  • Ziegler, H. (1975). Nature of transported substances. In: M.H. Zimmerman, & J.A. Milburn (Eds.), Transport in plants. I. Phloem transport. Encyclopedia of Plant Physiology, volume 1 (pp. 59-100). Berlin: Springer-Verlag.

    Google Scholar 

  • Zimmerman, J.G. (1954). Über die Sekretion saccharosespaltender trans-Glucosidasen in pflanzlichem Nektar. Experientia, 10, 145-149.

    Article  Google Scholar 

  • Zimmerman, M. (1953). Papierchromatographische Untersuchungen über die pflanzliche Zuckersekretion. Berichte der Schweizerischen Botanischen Gesellschaft, 63, 402-429.

    Google Scholar 

  • Zimmerman, M. (1983). Plant reproduction and optimal foraging: experimental nectar ma-nipulations in Delphinium nelsonii. Oikos, 41, 57-63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Nicolson, S.W., Thornburg, R.W. (2007). Nectar chemistry. In: Nicolson, S.W., Nepi, M., Pacini, E. (eds) Nectaries and Nectar. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5937-7_5

Download citation

Publish with us

Policies and ethics