Skip to main content

Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria

  • Conference paper
First International Meeting on Microbial Phosphate Solubilization

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 102))

Abstract

Plant growth-promoting bacteria (PGPB) are soil and rhizosphere bacteria that can benefit plant growth by different mechanisms. The ability of some microorganisms to convert insoluble phosphorus (P) to an accessible form, like orthophosphate, is an important trait in a PGPB for increasing plant yields. In this mini-review, the isolation and characterization of genes involved in mineralization of organic P sources (by the action of enzymes acid phosphatases and phytases), as well as mineral phosphate solubilization, is reviewed. Preliminary results achieved in the engineering of bacterial strains for improving capacity for phosphate solubilization are presented, and application of this knowledge to improving agricultural inoculants is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armarger N 2002 Genetically modified bacteria in agriculture. Biochimie 84, 1061–1072.

    Article  Google Scholar 

  • Babu-Khan S, Yeo C, Martin W L, Duron M R, Rogers R and Goldstein A 1995 Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl. Environ. Microbiol. 61, 972–978.

    PubMed  CAS  Google Scholar 

  • Bashan Y, Moreno M and Troyo E 2000 Growth promotion of the seawater-irrigated oil seed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol. Fertil. Soils 32, 265–272.

    Article  CAS  Google Scholar 

  • Baskanova G and Macaskie L E 1997 Microbially-enhanced chemisorption of nickel into biologically-synthesized hydrogen uranyl phosphate: a novel system for the removal and recovery of metals from aqueous solutions. Biotechnol. Bioeng. 54, 319–329.

    Article  Google Scholar 

  • Beacham I R 1980 Periplasmic enzymes in Gram-negative bacteria. Int. J. Biochem. 10, 877–883.

    Article  Google Scholar 

  • Bonthrone K M, Baskanova G, Lin F and Macaskie L E 1996 Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism. Nat. Biotechnol. 14, 635–638.

    Article  PubMed  CAS  Google Scholar 

  • de Lorenzo V, Herrero M, Jakubzik U and Timmis K N 1990 Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing and chromosomal insertion of cloned DNA in Gram-negative Eubacteria. J. Bacteriol. 172, 6568–6572.

    PubMed  Google Scholar 

  • Deng S, Summers M L, Kahn M L and McDermontt T R 1998 Cloning and characterization of a Rhizobium. meliloti nonspecific acid phosphatase. Arch. Microbiol. 170, 18–26.

    Article  PubMed  CAS  Google Scholar 

  • Deng S, Elkins J G, Da L H, Botero L M and McDermott T R 2001 Cloning and characterization of a second acid phosphatase from Sinorhizobium meliloti strain 104A14. Arch. Microbiol. 176, 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Fraga R, Rodríguez H and Gonzalez T 2001 Transfer of the gene encoding the Nap A acid phosphatase from Morganella morganii to a Burkholderia cepacia strain. Acta. Biotechnol. 21, 359–369.

    Article  CAS  Google Scholar 

  • Glick B R 1995 The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 41, 109–117.

    Article  CAS  Google Scholar 

  • Goldstein A H and Liu S T 1987 Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5, 72–74.

    Article  CAS  Google Scholar 

  • Goldstein A H 1996 Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by Gram-negative bacteria. In Phosphate in Microorganisms: Cellular and Molecular Biology. Eds. A Torriani-Gorini, E Yagil and S Silver. pp. 197–203. ASM Press, Washington, DC.

    Google Scholar 

  • Golovan S, Wang G, Zhang J and Forsberg C W 2000 Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can. J. Microbiol. 46, 59–71.

    Article  PubMed  CAS  Google Scholar 

  • Iddris E E, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T and Borris R 2002 Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148, 2097–2109.

    Google Scholar 

  • Igual J M, Valverde A, Cervantes E and Velázquez E 2001 Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21, 561–568.

    Article  Google Scholar 

  • Illmer P and Shinnera F 1995 Solubilization of inorganic calcium phosphates. Solubilization mechanisms. Soil Biol. Biochem. 27, 257–263.

    Article  CAS  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkinen N and Apajalahti J 1998 Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64, 2079–2085.

    PubMed  CAS  Google Scholar 

  • Kim K Y, McDonald G A and Jordan D 1997 Solubilization of hydroxypatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol. Fert. Soils 24, 347–352.

    Article  CAS  Google Scholar 

  • Kim Y O, Lee J K, Kim H K, Yu J H and Oh T K 1998a Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol. Lett. 162, 185–191.

    Article  PubMed  CAS  Google Scholar 

  • Kim K Y, Jordan D and Krishnan H B 1998b Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microb. Lett. 159, 121–127.

    CAS  Google Scholar 

  • Krishnaraj P U and Goldstein A H 2001 Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol. Lett. 205, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Krishnaraj P U, Sadasivam K V and Khanuja S PS 1999 Mineral phosphate soil defective mutants of Pseudomonas sp. express pleiotropic phenotypes. Curr. Sci. (Bangalore, India) 76, 1032–1034.

    Google Scholar 

  • Lei X G and Stahl C H 2001 Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol. 57, 474–481.

    Article  PubMed  CAS  Google Scholar 

  • Liu S T, Lee L Y, Taj C Y, Hung C H, Chang Y S, Wolfrang J H, Rogers R and Goldstein A H 1992 Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme Pyrroloquinoline Quinone. J. Bacteriol. 174, 5814–5819.

    PubMed  CAS  Google Scholar 

  • López-Bucio J, de la Vega O M, Guevara-García A and Herrera-Estrella L 2000 Enhanced phophorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 18, 450–453.

    Article  PubMed  Google Scholar 

  • Macaskie L E, Yong P, Doyle T C, Roig M G, Díaz M and Manzano T 1997 Bioremediation of uranium-bearing waste-water: biochemical and chemical factors affecting bioprocess application. Biotechnol. Bioeng. 53, 100–109.

    Article  CAS  PubMed  Google Scholar 

  • Morrissey J P, Walsh O’Donnell U F; A, Moenne-Loccoz Y and O’Gara F 2002 Exploitation of genetically modified inoculants for industrial ecology applications. Antonie van Leeuwenhoek 81, 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Reilly T J, Baron G S, Nano F and Kuhlenschmidt M S 1996 Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis. J. Biol. Chem. 271, 10973–10983.

    Article  PubMed  CAS  Google Scholar 

  • Richardson A E 1994 Soil microorganisms and phosphorous availability. In Soil Biota: Management in Sustainable Farming Systems. Eds. CE Pankhurst, BM Doube and VVSR Gupta. pp. 50–62. CSIRO, Victoria, Australia.

    Google Scholar 

  • Richardson A E, Hadobas P A and Hayes J E 2001a Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorous from phytate. Plant J 25, 641–649.

    Article  PubMed  CAS  Google Scholar 

  • Richardson A E, Hadobas P A, Hayes J E, O’Hara C P and Simpson R J 2001b Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229, 47–56.

    Article  CAS  Google Scholar 

  • Rodríguez E, Han Y and Lei X G 1999 Cloning, sequencing and expression of an Escherichia. coli acid phopshatase/phytase gene (appA2) isolated from pig colon. Biochem. Biophys. Res. Comm. 257, 117–123.

    Article  Google Scholar 

  • Rodríguez H and Fraga R 1999 Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339.

    Article  PubMed  Google Scholar 

  • Rodríguez H, Gonzalez T and Selman G 2000b Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J. Biotechnol. 84, 155–161.

    Article  Google Scholar 

  • Rodríguez H, Rossolini G M, Gonzalez T, Jiping L and Glick B R 2000a Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity. Curr. Microbiol. 40, 362–366.

    Article  PubMed  Google Scholar 

  • Rossolini G M, Shipa S, Riccio M L, Berlutti F, Macaskie L E and Thaller M C 1998 Bacterial non-specific acid phosphatases: physiology, evolution, and use as tools in microbial biotechnology. Cell Mol. Life Sci. 54, 833–850.

    Article  PubMed  CAS  Google Scholar 

  • Tarafdar J C and Jung A 1987 Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fertil. Soils 3, 199–204.

    Article  CAS  Google Scholar 

  • Tarafdar J C and Claassen N 1988 Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol. Fertil. Soils 5, 308–312.

    Article  CAS  Google Scholar 

  • Thaller M C, Berlutti F, Schippa S, Lombardi G and Rossolini G M 1994 Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phos-phatase of Morganella morganii. Microbiology 140, 1341–1350.

    Article  PubMed  CAS  Google Scholar 

  • Thaller M C, Berlutti F, Schippa S, Iori P, Passariello C and Rossolini G M 1995a Heterogeneous patterns of acid phosphatases containing low-molecular-mass polypeptides in members of the family Enterobacteriaceae. Int. J. Syst. Bacteriol. 4, 255–261.

    Article  Google Scholar 

  • Thaller M C, Lombardi G, Berlutti F, Schippa S and Rossolini G M 1995b Cloning and characterization of the NapA acid phosphatase/phosphotransferase of Morganella morganii: identification of a new family of bacterial acid phosphatase encoding genes. Microbiology 140, 147–151.

    Google Scholar 

  • Tye A J, Siu F K, Leung T Y and Lim B L 2002 Molecular cloning and the biochemical characterization of two novel phytases from Bacillus subtilis 168 and Bacillus licheniformis. Appl. Microbiol. Biotechnol. 59, 190–197.

    Article  PubMed  CAS  Google Scholar 

  • Wanner B L 1996 Phosphorus assimilation and control of the phosphate regulon. In Escherichia Coli and Salmonella, Cellular and Molecular Biology,. Eds. FC Niedhardt, R Curtiss III, JL Ingraham, EC Lin, KB Low, B Magasanik, WS Reznikoff, M Riley, M Schaechter and HE Umbarger. pp. 1357–1381. 2nd edition, 1ASM Press, Washington, DC.

    Google Scholar 

  • Yanming H, Wilson D B and Lei X G 1999 Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 65, 15–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Velázquez C. Rodríguez-Barrueco

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Rodríguez, H., Fraga, R., Gonzalez, T., Bashan, Y. (2007). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. In: Velázquez, E., Rodríguez-Barrueco, C. (eds) First International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5765-6_2

Download citation

Publish with us

Policies and ethics