Skip to main content

Human activities changing the nitrogen cycle in Brazil

  • Chapter

Abstract

The production of reactive nitrogen worldwide has more than doubled in the last century because of human activities and population growth. Advances in our understanding of the nitrogen cycle and the impacts of anthropogenic activities on regional to global scales is largely hindered by the paucity of information about nitrogen inputs from human activities in fast-developing regions of the world such as the tropics. In this paper, we estimate nitrogen inputs and outputs in Brazil, which is the world’s largest tropical country. We determined that the N cycle is increasingly controlled by human activities rather than natural processes. Nitrogen inputs to Brazil from human activities practically doubled from 1995 to 2002, mostly because of nitrogen production through biological fixation in agricultural systems. This is in contrast to industrialized countries of the temperate zone, where fertilizer application and atmospheric deposition are the main sources of anthropogenic nitrogen. In Brazil, the production of soybean crops over an area of less than 20 million ha, was responsible for about 3.2 Tg N or close to one-third of the N inputs from anthropogenic sources in 2002. Moreover, cattle pastures account for almost 70% of the estimated 280 × 106 ha of agricultural land in Brazil and potentially fix significant amounts of N when well managed, further increasing the importance of biological nitrogen fixation in the nitrogen budget. Much of these anthropogenic inputs occur in the Brazilian savannah region (Cerrado), while more urbanized regions such as the state of São Paulo also have high rates of nitrogenous fertilizer inputs. In the Amazon, rates of anthropogenic nitrogen inputs are relatively low, but continuing conversion of natural forests into cattle pasture or secondary forests potentially add a significant amount of new nitrogen to Brazil given the vast area of the region. Better measurements of biological fixation rates in Brazil are necessary for improving the nitrogen budgets, especially at a more refined spatial scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber J.D., Magill A.H., McNutty S.G., Boone R.D., Nadelhoffer K.J., Downs M. and Hallett R.A. 1995. Forest biogeochemistry and primary production altered by nitrogen saturation. Water, Air Soil Pollut. 85: 1665–1670.

    Article  CAS  Google Scholar 

  • Aber J.D., Goodale C.L., Ollinger S.V., Smith M., Magill A.H., Martin M.E., Hallet R.A. and Stoddard J.L. 2003. Is nitrogen deposition altering the nitrogen status of Northeastern forests? BioScience 53: 375–389.

    Article  Google Scholar 

  • Alves B.J.R., Boddey R.M. and Urquiaga S. 2003. The success of BNF in soybean in Brazil. Plant Soil 252: 1–9.

    Article  CAS  Google Scholar 

  • Agriculture and Agrifood Canada. 2004. Opportunities in the food market in Brazil, [online] URL: http://www.atn-riae.agr.ca/latin/3795_e.htm.

    Google Scholar 

  • ANA. Regiões Hidrográficas. Agência Nacional de Águas, [online] URL: http://www.ana.gov.br.

    Google Scholar 

  • ANA. Water Resources Management in Brazil. Agência Nacional de Águas, [online] URL: http://www.hidroweb.ana.gov.br/.

    Google Scholar 

  • ANDA. 2003. Estatísticas. Associação Nacional para Difusão de Adubos. [online] URL: http://www.anda.gov.br.

    Google Scholar 

  • AQUASTAT. 2004. Food and Agriculture Organization of the United Nations, Information System on Water and Agriculture [online] URL: http://www.fao.org/.

    Google Scholar 

  • Bernoux M. 2001. CO2 emissions from liming of agricultural soils in Brazil. Global Biogeochem. Cycles 17: Art. No. 1049.

    Article  CAS  Google Scholar 

  • Boddey R.M., Macedo R., Tarre R.M., Ferreira E., de Oliveira O.C., Rezende C.P., Cantarutti R.B., Pereira J.M., Alves B.J.R. and Urquiaga S. 2004. Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agric. Ecosys. Environ. 103: 389–403.

    Article  CAS  Google Scholar 

  • Boddey R.M., Sá J.C.M., Alves B.J.R. and Urquiaga S. 1997. The contribution of biological N fixation for sustainable agricultural systems in the tropics. Soil Biol. Biochem. 29: 787–799.

    Article  CAS  Google Scholar 

  • Boddey R.M., Urquiaga S., Alves B.J.R. and Reis V. 2003. Endophytic nitrogen fixation in sugarcare: present knowledge and future applications. Plant Soil 252: 139–149.

    Article  CAS  Google Scholar 

  • Boddey R.M., Urquiaga S., Reis V.M. and Döbereiner J. 1991. Biological nitrogen fixation associated with sugarcane. Plant Soil 137: 111–117.

    Article  Google Scholar 

  • Boddey R.M. and Victoria R.L. 1986. Estimation of biological nitrogen-fixation associated with Brachiaria and Paspalum grasses using 15N labeled organic matter and fertilizer. Plant Soil 90: 265–294.

    Article  CAS  Google Scholar 

  • Bonetto C., Zalocar Y., Planas D. and Pedrozo F. 1991. Responses of phytoplankton to experimental nutrient enrichment in the Paraguay, Bermejo and upper Parana rivers. Trop. Ecol. 32: 47–64.

    Google Scholar 

  • Boyer E.W., Goodale C.L., Jaworski N.A. and Howarth R.W. 2002. Effects of anthropogenic nitrogen loading on riverine nitrogen export in the northeastern US. Biogeochemistry 57 & 58: 137–169.

    Article  Google Scholar 

  • Bustamante M.M.C., Nardoto G.B. and Martinelli L.A. 2004. Aspectos Comparativos Del Ciclaje De Nutrientes Entre Bosques Amazónicos De Terra-Firme Y Sabanas Tropicales (Cerrado Brasileiro). In: Hernán Marino Cabrera (ed.), Fisiología Ecológica En Plantas. Mecanismos y Respuestas a Estrés en los Ecosistemas, Ediciones Universitárias de Valparaiso, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile, pp. 189–205

    Google Scholar 

  • Cleveland C.C., Townsend A.R., Schimel D.S., Fisher H., Howarth R.W., Hedin L.O., Perakis S.S., Latty E.F., Von Fischer J.C., Elseroad A. and Wasson M.F. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem. Cycles 13: 623–645.

    Article  CAS  Google Scholar 

  • Costa M.H., Botta A. and Cardille J.A. 2003. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 283: 206–217.

    Article  Google Scholar 

  • Dentener F.J. and Crutzen P.J. 1994. A three-dimentional model of the global ammonia cycle. J. Atmos. Chem. 19: 331–369.

    Article  CAS  Google Scholar 

  • Dobereiner J. 1997. Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol. Biochem. 29: 771–774.

    Article  Google Scholar 

  • Downing J.A., McClain M., Twilley R., Melack J.M., Elser J., Rabalais N., Lewis W.M., Turner R.E., Corredor J., Soto D., Yanez-Aranciba A., Kopaska J.A. and Howarth R.W. 1999. The impact of accelerating land-use change on the N cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46: 109–148.

    Google Scholar 

  • EMBRAPA. 2002. Brazilian Agency of Agriculture and Pecuary.

    Google Scholar 

  • FAOSTAT. 2004. Food and Agriculture Organization of the United Nations, Statistical Databases [online] URL: http://www.apps.fao.org/.

    Google Scholar 

  • Fearnside P.M. 2005. Deforestation in Brazilian Amazonia: history, rates and consequences. Conservation Biology 19: 680–688.

    Article  Google Scholar 

  • Filoso S., Williams M.R. and Melack J.M. 1999. Composition and deposition of throughfall in a flooded forest archipelago (Negro River, Brazil). Biogeochemistry 45: 169–195.

    Google Scholar 

  • Filoso S., Martinelli L.A., Williams M.R., Lara L.B., Krusche A., Ballester M.V., Victoria R.L. and Camargo P.B. 2003. Land use and nitrogen export in the Piracicaba River basin, Southeast Brazil. Biogeochemistry 65: 275–294.

    Article  CAS  Google Scholar 

  • Galloway J.N., Dentener F.J., Capone D.G., Boyer E.W., Howarth R.W., Seitzinger S.P., Asner G.P., Cleveland C., Green P., Holland E., Karl D.M., Michaels A.F., Porter J.H., Townsend A. and Vorösmarty C. 2004. Nitrogen cycles: past and future. Biogeochemistry 70: 153–226.

    Article  CAS  Google Scholar 

  • Galloway J.N. and Cowling E.B. 2002. Reactive nitrogen and the world: 200 years of change. Ambio 31: 64–71.

    PubMed  Google Scholar 

  • Galloway J.N., Schlesinger W.H., Levy H., Michaels A. II and Schnoor J.L. 1995. Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochem. Cycles 9: 235–252.

    Article  CAS  Google Scholar 

  • Howarth R.W., Boyer E.W., Pabich W.J. and Galloway J.N. 2002. Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio 31: 88–96.

    PubMed  Google Scholar 

  • Howarth R.W., Anderson D., Cloern J., Elfring E., Hopkinson C., Lapointe B., Malone T., Marcus N., McGlathery K., Sharpley A. and Walker D. 2000. Nutrient pollution of coastal rivers, bays, and seas. Issues Ecol. 7: 1–15.

    Google Scholar 

  • Howarth R.W., Billen G., Swaney D., Townsend A., Jarworski N., Lajtha K., Downing J.A., Elmgren R., Caraco N., Jordan T., Berendse F., Freney J., Kueyarov V., Murdoch P. and Zhu Zhao-liang 1996. Riverine inputs of nitrogen to the North Atlantic Ocean: fluxes and human influences. Biogeochemistry 35: 75–139.

    Article  CAS  Google Scholar 

  • IBGE. 2004. Levantamento sistemático da produção agrícola. Instituto Brasileiro de Geografia e Estatística, [online] URL: http://www.ibge.gov.br/.

    Google Scholar 

  • SIDRA/ IBGE. 2004. Sistema IBGE de Recuperação Automática, Banco de Dados Agregados, Instituto Brasileiro de Geografia e Estatística, [online] URL: http://www.sidra.ibge.gov.br/bda/popul/.

    Google Scholar 

  • INPE. 2004. Monitoramento da floresta Amazonica brasileira por satelite — Projeto PRODES. Instituto Nacional de Pesquisas Espaciais, [online] URL: http://www.obt.inpe.br/prodes/.

    Google Scholar 

  • Keller M., Palace M., Asner G.P., Pereira R. and Silva J.N.M. 2004. Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. Global Change Biol. 10: 784–795.

    Article  Google Scholar 

  • Laurance W.F., Albernaz A.K.M., Fearnside P.M., Vasconcelos H.L. and Ferreira L.V. 2004. Deforestation in Amazonia. Science 304(5674): 1109–1111.

    Article  PubMed  CAS  Google Scholar 

  • Lara L.S., Artaxo P. and Martinelli L.A. 2001. Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil. Atmos. Environ. 35: 4937–4945.

    Article  CAS  Google Scholar 

  • Lelieveld J. and Dentener F. 2000. What controls tropospheric ozone? J. Geophys. Res. 105: 3531–3551.

    Article  CAS  Google Scholar 

  • Lesack L.F. and Melack J.M. 1991. The deposition, composition, and potential sources of major ionic solutes in rain of the central Amazon basin. Water Resourc. Res. 27: 2953–2977.

    Article  CAS  Google Scholar 

  • Lewis W.M., Melack J.M., McDowell W.H., McClain M. and Richey J. 1999. Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry 46: 149–162.

    Article  CAS  Google Scholar 

  • Machado R., Ramos-Neto M, Pereira P.G., Caldas E., Gonçalves D., Santos N., Tabor K. and Steininger M. 2004. Estimativas de perda da área do Cerrado brasileiro. Relatório Técnico. Conservation International — Brazil, Brasília-DF., 23 pp

    Google Scholar 

  • Martinelli L.A., Piccolo M.C., Townsend A.R., Vitousek P.M., Cuevas E., Mcdowell W., Robertson G.P., Santos O.C. and Treseder K. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46: 45–65.

    CAS  Google Scholar 

  • Martinelli L.A., Almeida S., Brown I.F., Moreira M.Z., Victoria R.L., Filoso S., Ferreira C.A.C. and Thomas W.W. 2000. Variation in nutrient distribution in a humid tropical forest in Rondoônia, Brazil. Biotropica 32: 597–613.

    Article  Google Scholar 

  • Marufu L., Dentener F., Lelieveld J. Andreae M.O. and Helas G. 2000. Photochemistry of the African troposphere: the influence of biomass burning emissions. J. Geophys. Res. 105: 14513–14530.

    Article  CAS  Google Scholar 

  • Matson P.A., McDowell W.H., Townsend A.R. and Vitousek P.M. 1999. The globalization of N deposition: Ecosystem consequences in tropical environments. Biogeochemistry 46: 67–83.

    CAS  Google Scholar 

  • Matson P.A., Lohse K.A. and Hall S.J. 2002. The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31: 113–119.

    PubMed  Google Scholar 

  • Melillo J.M., Steudler P.A., Feigl B.J., Neill C., Garcia D., Piccolo M.C., Cerri C.C. and Tian H. 2001. Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. J. Geophys. Res. Atmos. 106: 34179–34188.

    Article  CAS  Google Scholar 

  • Miranda C.H.B. and Boddey R.M. 1987. Estimation of biological nitrogen fixation with 11 ecotypes of Panicum maximum grown in nitrogen-15 labeled soil. Agron. J. 79: 558–563.

    Article  Google Scholar 

  • Mostasso L., Mostasso F.L., Dias B.G., Vargas M.T. and Hungria H. 2002. Selection of bean (Phseoulus vulgaris L.) rhizobial strans for the Brazilian Cerrados. Field Crops Res. 73: 121–132.

    Article  Google Scholar 

  • Müeller C.C. and Bustamante M. 2002. Análise da expansão da soja no Brasil. [online] URL: http://www.worldbank.org/rfpp/news/debates/mueller.pdf.

    Google Scholar 

  • Müeller M.L., Guimarães M.F., Desjardins T. and Mitja D. 2004. The relationship between pasture degradation and soil properties in the Brazilian Amazon: a case study. Agric. Ecosys. Environ. 103: 279–288.

    Article  Google Scholar 

  • Nardoto G.B. and Bustamante M.C. 2003. Effects of fire on soil nitrogen dynamics and microbioal biomass in savannas of Central Brazil. Pesq. Agropec. Bras. 38: 955–962.

    Article  Google Scholar 

  • Neff J.C., Holland E.A., Dentener F.J. McDowell W.H. and Russell K.M. 2002. The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57/58: 99–136.

    Article  CAS  Google Scholar 

  • Neill C., Piccolo M.C., Cerri C.C., Steudler P.A., Melillo J.M. and Brito M. 1997. Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. Oecologia 110: 243–252.

    Article  Google Scholar 

  • Nepstad D.C., Verissimo A., Alencar A., Nobre C., Lima E., Lefebvre P., Schlesinger P., Potter C., Mouthinho P., Mendoza E., Cochrane M., and Brooks V. 1999. Nature 398: 505–508.

    Article  CAS  Google Scholar 

  • NRC 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, DC.

    Google Scholar 

  • Oliveira M.W., Trivelin P.C.O., Gava G.J.C. and Vitti A.C. 1999. Lixiviação de nitrogênio em solo cultivado com cana-de-açúcar: experimento em lisímetro. Stab. Álcool, Açúcar e Sub-produtos 18: 28–31.

    Google Scholar 

  • Pedrozo F. and Bonetto C. 1989. Influence of river regulation on nitrogen and phosphorus mass transport in a large South American river. Regul. Rivers Res. Manage. 4: 59–70.

    Google Scholar 

  • Peoples M., Gault R., Lean B., Sykes J. and Brockwell J. 1995. Nitrogen fixation by soybean in commercial irrigated crops in Central and Southern New South Wales. Soil Biol. Biochem. 27: 553–561.

    Article  CAS  Google Scholar 

  • Pinto A.S., Bustamante M.C., Kisselle K., Burke R., Zepp R., Viana L.T., Varella R.F. and Molina M. 2002. Soil emissions of N2O, NO, and CO2 in Brazilian savannas: effects of vegetation type, seasonality, and prescribed fires. J. Geophys. Res. 107: 8089doi: 10.1029./2001 JD000342.

    Article  CAS  Google Scholar 

  • POTAFOS-Brasil. 2004. Consumo de fertilizantes. Potash and Phosphate Institute of Brazil. [online] URL: http://www.potafos.org/ppiweb/brazil.nsf.

    Google Scholar 

  • Rabalais N.N. 2002. Nitrogen in aquatic ecosystems. Ambio 31: 102–112.

    PubMed  Google Scholar 

  • Ratter J.A., Ribeiro J.F. and Bridgewater S. 1997. The Brazilian Cerrado vegetation and threats to its biodiversity. Ann. Bot. 80: 223–230.

    Article  Google Scholar 

  • Rodhe H., Dentener F. and Schulz M. 2002. The global distribution of acidifying wet deposition. Environ. Sci. Tech. 36: 4382–4388.

    Article  CAS  Google Scholar 

  • Seitzinger S.P., Kroeze C., Bouwman A.F., Caraco N., Dentener F. and Styles R.V. 2002. Global Patterns of dissolved and particulate nitrogen inputs to coastal systems: Recent conditions and future projections. Estuaries 25: 640–655.

    Article  CAS  Google Scholar 

  • Smil V. 1999. Nitrogen in crop production: an account of global flows. Global Biogeochem. Cycles 13: 647–662.

    Article  CAS  Google Scholar 

  • Smil V. 2001. Enriching the Earth. MIT Press, Cambridge.

    Google Scholar 

  • Urquiaga S., Cruz K.H.S. and Boddey R.M. 1992. Contribution of nitrogen fixation to sugarcane: nitrogen-15 and nitrogen balance estimates. Soil Sci. Soc. Am. 22: 104–114.

    Google Scholar 

  • USDA. 2003. Brazil: Future Agricultural Expansion Potential Underrated. United States Department of Agriculture, Production Estimates and Crop Assessment Division, Foreign Agricultural Service. [online] URL: http://www.fas.usda.gov/pecad/highlights/2003/01/Ag_expansion/index.htm.

    Google Scholar 

  • Villar C.A., de Cabo L., Vaithiyanathan P. and Bonetto C. 1998. River-floodplain interactions: nutrient concentrations in the Lower Parana River. Archiv fur Hydrobioligie 142: 433–450.

    CAS  Google Scholar 

  • Vitousek P.M. and Field C.B. 1999. Ecosystem constrains to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46: 179–202.

    CAS  Google Scholar 

  • Williams M.R. and Melack J.M. 1997. Solute export from forested and partially deforested catchments in the central Amazon. Biogeochemistry 38: 67–102.

    Article  CAS  Google Scholar 

  • Yoneyama T., Muraoka T., Kim T.H., Dacanay E.V. and Nakanishi Y. 1997. The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Phillippines and Myako, Japan. Plant Soil 189: 239–244.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Filoso, S., Martinelli, L.A., Howarth, R.W., Boyer, E.W., Dentener, F. (2006). Human activities changing the nitrogen cycle in Brazil. In: Martinelli, L.A., Howarth, R.W. (eds) Nitrogen Cycling in the Americas: Natural and Anthropogenic Influences and Controls. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5517-1_4

Download citation

Publish with us

Policies and ethics