Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 143))

Abstract

Fibre reinforced polymer composite materials can pose a serious health hazard in fire. Smouldering or flaming composites can produce copious amounts of dense smoke consisting of a potentially toxic mix of combustion gases, soot particles and fibres. These combustion products can cause acute and delayed health problems and, in the worst case, cause death. The short-term effects of inhaling toxic smoke include impaired judgement and decision-making capacity which can jeopardise the safety of a person attempting to escape from a burning composite structure, such as a building, aircraft, ship or rail carriage. The irritants in smoke, which include combustion gases (eg. HCl, HBr and NO2), soot particles and fibre fragments, can also delay escape by causing severe bouts of coughing and choking as well as extreme eye irritation that prevents a person from keeping their eyes open long enough to find an exit. The delayed, long-term health problems that result from inhaling smoke may include damage to tissues and organs, possibly leading to cancers and tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bickers. Danger: toxic aircraft. Jane’s Defence Weekly, 1991; 711.

    Google Scholar 

  2. M. Gaines. Composites menace crash teams. Flight International, 1991; 17.

    Google Scholar 

  3. K. Tannen. Advanced composite materials. Fire & Arson Investigator, 1993; 1:50–51.

    Google Scholar 

  4. F. Barthorpe. Danger: fibre on fire. Professional Engineering, 1995; 8:10–12.

    Google Scholar 

  5. J. Anderson. Aircraft composite materials. In: Proceedings of the 2 nd California Symposium on Aviation Emergencies, 1–3 October 2001, Santa Monica, CA.

    Google Scholar 

  6. H.L. Kaplan, A.F. Grand and G.E. Hartzell. Combustion Toxicology, Principles and Test Methods, Lancaster PA: Technomic Publishing Co., 1983.

    Google Scholar 

  7. G.E. Hartzell. Assessment of the toxicity of smoke. In: Advances in Combustion Toxicology, Lancaster PA: Technomic Publishing Co., 1988, pp. 1:8–18.

    Google Scholar 

  8. B.C. Levin and R.G. Gann. Toxic potency of fire smoke: measurement and use. In: Fire and Polymers: Hazards Identification and Prevention, ed. G.L. Nelson, ACS Symposium Series 425, Washington DC: American Chemical Society, 1990, pp. 3–11.

    Google Scholar 

  9. D.A. Purser. Toxicity assessment of combustion products. In: SFPE Handbook of Fire Protection Engineering, ed. P.J. DiNenno, Society of Fire Protection Engineers, pp. 85–146.

    Google Scholar 

  10. A. Vogt. Thermal analysis of epoxy-resins: identification of decomposition products. Thermochemica Acta, 1985; 85:407–410.

    Article  CAS  Google Scholar 

  11. B.C. Levin. A summary of the NBS literature reviews on the chemical nature and toxicity of the pyrolysis and combustion products from seven plastics: acrylonitrile-butadiene-styrene (ABS), nylons, polyesters, polyethylenes, polystyrenes, poly(vinyl chlorides), and rigid polyurethane foams. National Bureau of Standards Report NBSIR 85-3267, 1986.

    Google Scholar 

  12. D.J. Caldwell and Y.C. Alarie. A method to determine the potential toxicity of smoke from buring polymers: III. Comparison of synthetic polymers to Douglas Fir using the Upitt II flaming combustion/toxicity of smoke apparatus. Journal of Fire Sciences, 1991; 9:470–518.

    Article  CAS  Google Scholar 

  13. B.C. Levin. The development of a new small-scale smoke toxicity test method and its comparison with real-scale fire tests. Toxicology Letters, 1992; 64/65:257–264.

    Article  Google Scholar 

  14. B.C. Levin. The development of a new small-scale smoke toxicity test method and its comparison with real-scale fire tests. In: Toxicology from Discovery and Experimentation to the Human Perspective, ed. P.L. Chambers, C.M. Chambers, H.M. Bolt and P. Preziosi, Amsterdam: Elsevier Science, 1992, pp. 257–264.

    Google Scholar 

  15. V. Babrauskas, R.H. Harris, E. Braun, B.C. Levin, M. Paabo and R.G. Gann. Large-scale validation of bench-scale fire toxicity tests. Journal of Fire Sciences, 1991; 9:125–148.

    Article  CAS  Google Scholar 

  16. B.C. Levin, M. Paabo, J.L. Gurman and S.E. Harris. Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires. Fundamental & Applied Toxicity, 1987; 9:236–250.

    Article  CAS  Google Scholar 

  17. Y. Alarie and R.C. Anderson. Toxicologic and acute lethal hazard of thermal decomposition products of synthetic and natural polymers. Journal of Toxicology & Applied Pharmacology, 1979; 51:341–362.

    Article  CAS  Google Scholar 

  18. B.C. Levin. Combustion toxicology. In: Encyclopedia of Toxicology, ed. P. Wexler and S.C. Gad, San Diego: Academic Press, 1998, pp. 360–374.

    Google Scholar 

  19. E. Braun, R.G. Gann, B.C. Levin and M. Paabo. Combustion product toxic potency measurements: comparison of a small scale test and ‘real-world’ fires. Journal of Fire Sciences, 1990; 8:63–79.

    Article  CAS  Google Scholar 

  20. V. Babrauskas. The generation of CO in bench-scale fire tests and the prediction for real-scale fires. In: Proceedings of the International Fire & Materials Conference, London: Interscience Communications Ltd., 1992, pp. 155–177.

    Google Scholar 

  21. V. Babrauskas. Effective measurement techniques for heat, smoke, and toxic fire gases. Fire Safety Journal, 1991; 17:13–26.

    Article  CAS  Google Scholar 

  22. B.C. Levin, M. Paabo, J.L. Gurman, S.E. Harris and E. Braun. Toxicological interactions between carbon monoxide and carbon dioxide. Toxicology, 1987; 47:135–164.

    Article  CAS  Google Scholar 

  23. B.C. Levin, E. Braun, M. Navarro and M. Paabo. Further development of the N-gas mathematical model: An approach for predicting the toxic potency of complex combustion mixtures. In: Fire and Polymers II: Materials and Tests for Hazard Prevention, ACS Symposium Series No. 599, ed. G.L. Nelson, 21–26 August 1994, Washington DC: American Chemical Society, pp. 292–311.

    Google Scholar 

  24. J.C. Lipscomb, K.J. Kuhlmann, J.M. Cline, R.E. Larcomb, R.D. Peterson and D.L. Courson. Combustion products from advanced composite materials. Drug Chemistry & Toxicology, 1997; 20: 281–292.

    CAS  Google Scholar 

  25. E.C. Kimmel, J.E. Reboulet, D.L. Courson and K.R. Still. Airway reactivity response to aged carbongraphite/epoxy composite material smoke. Journal of Applied Toxicology, 2002; 22:193–206.

    Article  CAS  Google Scholar 

  26. A.N. Montestruc, M.A. Stubblefield, S.-S. Pang, V.A. Cundy and R.H. Lea. Smoke and toxicity tests of fiberglass-resin composite pipe samples. Composites, 1997; 28B:287–293.

    CAS  Google Scholar 

  27. J. Hunter and K.L. Forsdyke. Phenolic glass fiber-reinforced plastic and its recent applications. Polymer Composites, 1989; 2:169–185.

    CAS  Google Scholar 

  28. Tewarson and D.P. Macaione. Polymers and composites — an examination of fire spread and generation of heat and fire products. Journal of Fire Sciences, 1983; 11:421–441.

    Article  Google Scholar 

  29. U. Sorathia, T. Dapp and J. Kerr. Flammability characteristics of composites for shipboard and submarine internal applications. In: Proceedings of the 36 th International SAMPE Symposium, 15–18 April 1991, San Diego, CA, pp. 1868–1878.

    Google Scholar 

  30. J. Hume. Assessing the fire performance characteristics of GRP composites. In: Proceedings of the International Conference on Materials and Design Against Fire, London, 1992, pp. 11–15.

    Google Scholar 

  31. U. Sorathia. Flammability and fire safety of composite materials. In: Proceedings of the 1 st International Workshop on Composite Materials for Offshore Operations, Houston, Texas, 26–28 October 1993, pp. 309–317.

    Google Scholar 

  32. J.R. Brown, P.D. Fawell and Z. Mathys. Fire-hazard assessment of extended-chain polyethylene and aramid composites by cone calorimetry. Fire & Materials, 1994; 18:167–172.

    Article  CAS  Google Scholar 

  33. J.R. Brown and Z. Mathys. Reinforcement and matrix effects on the combustion properties of glass reinforced polymer composites. Composites, 1997; 28A:675–681.

    CAS  Google Scholar 

  34. S.B. Sastri, J.P. Armistead, T.M. Keller and U. Sorathia. Flammability characteristics of phthalonitrile composites. In: Proceedings of the 42 th International SAMPE Symposium, 4–8 May 1997, pp. 1032–1038.

    Google Scholar 

  35. J.H. Koo, B. Muskopf, S. Venumbaka, R. Van Dine, B. Spencer and U. Sorathia. Flammability properties of polymer composites for marine applications. In: Proceedings of the 32 th International SAMPE Technical Conference, 5–9 November 2000, Paper No. 136.

    Google Scholar 

  36. E. Braun and B.C. Levin. Polyesters: a review of the literature on products of combustion and toxicity. Fire & Materials, 1986; 10:107–123.

    Article  CAS  Google Scholar 

  37. B.K. Kandola and A.R. Horrocks. Composites. In: Fire Retardant Materials, ed. A.R. Horrocks and D. Price, Cambridge: Woodhead Publishing Ltd, 2002, pp. 182–203.

    Google Scholar 

  38. T.H. Dailey and J. Shuff. Phenolic resins enhance public safety by reducing smoke, fire and toxicity in composites. In: Proceedings of the 46 th Annual Conference of the Composites Institute, 18–21 February 1991.

    Google Scholar 

  39. D. Purser. Toxicity of fire retardants in relation to life safety and environmental hazards. In: Fire Retardant Materials, ed. A.R. Horrocks and D. Price, Cambridge: Woodhead Publishing Ltd., 2003, pp. 69–127.

    Google Scholar 

  40. R.M. Morchat and J.A. Hiltz. Fire-safe composites for marine applications. In: Proceedings of the 24 th International SAMPE Technical Conference, 20–22 October 1992, pp. T153–T163.

    Google Scholar 

  41. J.R. Brown and D.K.C. Hodgeman. An e.s.r. study of the thermal degradation of Kevlar 49 aramid. Polymer, 1982; 23:365–368.

    Article  CAS  Google Scholar 

  42. S. Bourbigot, X. Flambard and F. Poutch. Study of the thermal degradation of high performance fibres — application to polybenzazole and p-aramid fibres. Polymer Degradation & Stability, 2001; 74:283–290.

    Article  CAS  Google Scholar 

  43. S. Bourbigot, X. Flambard, F. Poutch and S. Duquesne. Cone calorimeter study of high performance fibres — application to polybenzazole and p-aramid fibres. Polymer Degradation & Stability, 2001;74:481–486.

    Article  CAS  Google Scholar 

  44. J.A. Coneas, A. Marcilla, R. Font and J.A. Caballero. Thermogravimetric studies on the thermal decomposition of polyethylene. Journal of Analytical & Applied Pyrolysis, 1996; 36:1–15.

    Article  Google Scholar 

  45. H. Bockburn, A. Hornung, U. Hornung and D. Schawaller. Kinetic study on the thermal degradation of polypropylene and polyethylene. Journal of Analytical & Applied Pyrolysis, 1999; 48:93–109.

    Article  Google Scholar 

  46. U. Sorathia, H. Telegadas and M. Bergen. Mechanical and flammability characteristics of phenolic composites for naval applications. In: Proceedings of the 39 th International SAMPE Symposium, 11–14 April, 1994, pp. 2991–3002.

    Google Scholar 

  47. D.E. Casliostro. Combustion toxicology of epoxy/carbon fiber composites. NASA Center for Aerospace Information, 1981.

    Google Scholar 

  48. V. Babrauskas, B.C. Levin and R.G. Gann. A new approach to fire toxicity data for hazard evaluation’, ASTM Standardisation News. 1986; 14:28–33.

    Google Scholar 

  49. B.C. Levin, M. Paabo, J. Gurman, S.E. Harris and C.S. Bailey. Toxicity effects of the interactions of fire gases and their use in a hazard assessment computer model. The Toxicologist, 1987; 5:127.

    Google Scholar 

  50. B.C. Levin. A new approach for predicting the toxic potency of complex combustion mixtures. Proceedings of the American Chemical Society Division of Polymeric Materials, Science & Engineering, 1994; 71:173–174.

    CAS  Google Scholar 

  51. G.E. Hartzell, A.F. Grand and W.G. Switzer. Modeling of toxicological effects of fire gases: VII. Studies on evaluation of animal models in combustion toxicity. Journal of Fire Sciences, 1988;6:411–431.

    Article  CAS  Google Scholar 

  52. V.L. Bell. Potential release of fibrers from burning carbon composites. NASA Report N80-29431, 1980.

    Google Scholar 

  53. Anon. Carbon/Graphite Composite Materials Study. Third Annual Report, Office of Science & Technology Policy, Washington DC, 1980.

    Google Scholar 

  54. A. Sussholz. Evaluation of micron size carbon fibers released from burning graphite composites. NASA Report CR-159217, 1980.

    Google Scholar 

  55. J.F. Seibert. Composite fiber hazard. Air Force Occupational and Environmental Health Laboratory Report, AFOEHL Report 90-EI00178MGA, 1990.

    Google Scholar 

  56. E. Glougherty, J. Gerren, J. Greene, D. Haagensen and R.G. Zalosh. Graphite fiber emissions from burning composite helicopter components. United States Coast Guard, 1997.

    Google Scholar 

  57. S. Mahar. Particulate exposures from the investigation and remediation of a crash site of an aircraft containing carbon composites. Journal of the American Industrial Hygiene Association, 1990; 51:459–465.

    Google Scholar 

  58. T. Hertzberg. Dangers relating to fires in carbon-fibre based composite material. Fire & Materials, (in press).

    Google Scholar 

  59. S. Gandhi, R. Lyon and L. Speitel. Potential health hazards from burning aircraft composites. Journal of Fire Sciences, 1999; 17:20–41.

    Article  CAS  Google Scholar 

  60. H.D. Jones, T.R. Jones, W.H. Lyle. Carbon fiber: results of a survey of process workers and their environment in a factory producing continuous filament. Annals of Occupational Hygiene, 1982;26:861–868.

    Article  CAS  Google Scholar 

  61. P.E. Owen, J.R. Glazier, B. Ballantyne and J.J. Clary. Subchronic inhalation toxicology of carbon fibres. Journal of Occupational Medicine, 1986; 28:373–376.

    CAS  Google Scholar 

  62. T.R. Martin, S.W. Meyer and D.R. Luchtel. An evaluation of the toxicity of carbon fiber composites for lung cells in vitro and in vivo. Environmental Research, 1989; 49:246–261.

    Article  CAS  Google Scholar 

  63. S.A. Thomson. Toxicology of carbon fibers. In: Proceedings Occupational Health Aspects of Advanced Composite Technology in the Aerospace Industry, Health Effects and Exposure Considerations, 1989, pp. 164–176.

    Google Scholar 

  64. S.A. Thomson, R.J. Hilaski, R. Wright and D. Mattie. Nonrespirability of carbon fibers in rats from repeated inhalation exposure. Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD, Report AD-A228-196/HDT, 1990.

    Google Scholar 

  65. D.B. Warheit, J.F. Hansen, M.C. Carakostas and M.A. Hartsky. Acute inhalation toxicity studies in rats with a respirable-sized experimental carbon fibre: pulmonary biochemical and cellular effects. American Occupational Hygiene, 1994; 38:769–776.

    Google Scholar 

  66. R.S. Waritz, C.J. Collins, B. Ballantyne and J.J. Clary. Chronic inhalation of 3 µm diameter carbon fibres. The Toxicologist, 1990; 19:70–71.

    Google Scholar 

  67. Z. Zhang, X. Wang, L. Lin, S. Xing, Y. Wu, Y. Li, L. Wu and B. Gang. The effects of carbon fibre and carbon fibre composite dusts on bronchoalvelar lavage component of rates. Journal of Occupational Health, 2001; 43:75–79.

    Article  CAS  Google Scholar 

  68. P.F. Holt and M. Horne. Dust from carbon fiber. Environmental Research, 1978; 17:276–283.

    Article  CAS  Google Scholar 

  69. D.L. Luchtel. Carbon/graphite toxicology. In: Fiber Toxicology, ed. D.B. Warheit, New York: Academy Press, 1993, pp. 493–521.

    Google Scholar 

  70. D.J. Caldwell, K.J. Kuhlman and J.A. Roop. Smoke production in advanced composites. In Fire & Polymers II, ed. G.L. Nelson, Washington DC: ACS Symposium Series, American Chemical Society, 1995, pp. 366–375.

    Google Scholar 

  71. G.S. Whitehead, K.A. Grasman and E.C. Kimmel. Lung function and airway inflammation in rats following exposure to combustion products of carbon-graphite/epoxy composite material: comparison to a rodent model of acute lung function. Toxicology, 2003; 183:175–197.

    Article  CAS  Google Scholar 

  72. L. Chiazze, D.K. Watkins and C. Fryar. A case-control study of malignant and nonmaglignant respiratory disease among employees of a fibreglass manufacturing facility. British Journal of Industrial Medicine, 1992; 49:326–331.

    CAS  Google Scholar 

  73. T.W. Hesterberg, W.C. Miller, E.E. McConnell, J. Chevalier, J.G. Hadley, D.M. Bernstein, P. Thevenaz and R. Anderson. Chronic inhalation toxicity of size-separated glass fibres in Fisher 344 rats. Fundamental and Applied Toxicity, 1993; 20:464–476.

    Article  CAS  Google Scholar 

  74. W. Eastes and J.G. Hadley. Dissolution of fibers inhaled by rats. Journal of Inhalation Toxicology, 1995; 7:179–196.

    CAS  Google Scholar 

  75. P. Bofetta, R. Saracci, A. Andersen, P.A. Bertazzi, J. Chang-Claude, J. Cherrie, G. Ferro, R. Frentzel-Beyme, J. Hansen, J. Olsen, N. Plato, L. Teppo, P. Westerholm, P.D. Winter and C. Zocchetti. Cancer mortality among man-made vitreous fiber production workers. Epidemiology, 1997; 8:259–268.

    Article  Google Scholar 

  76. A. Searl. A comparative study of the clearance of respirable para-aramid, chrysotile and glass fibres from rat lungs. The Annals of Occupational Hygiene, 1997; 41:217–233.

    Article  CAS  Google Scholar 

  77. W.E. Fayerweather, J.R. Bender, J.G. Hadley and W. Eastes. Quantitative risk assessment for a glass fiber insulation product. Regulatory Toxicology & Pharmacology, 1997; 25:103–120.

    Article  CAS  Google Scholar 

  78. European Glass Fibre Producers Association. Continuous filament glass fibre and human health. 30 March 2002.

    Google Scholar 

  79. D.B. Warheit. Contemporary issues in fiber toxicology. Fundamental Applied Toxicology, 1995; 25:171–183.

    Article  CAS  Google Scholar 

  80. S.M. Mattson. Glass fibers in simulated lung fluid: dissolution behaviour and analytical requirements. Annals of Occupational Hygiene, 1994; 38:857–877.

    Article  Google Scholar 

  81. R. Risquez-Iribarren. Carbon black. In: Encyclopedia of Occupational Health Safety, ILO, Geneva, 1995, pp. 390.

    Google Scholar 

  82. J.M. Olson. Mishap risk control for advanced aerospace/composite materials. Airforce Systems Command, Advanced Composite Program Office, Report AJ554083, McClellan AFB, CA, 1994.

    Google Scholar 

  83. J.W.T. Andrews. Post crash management: the Royal Air Force approach. In: Proceedings of Aircraft Fire Safety, Advisory Group for Aerospace Research and Development, AGARD-CP-587, Germany, 1997.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

(2006). Health Hazards of Composites in Fire. In: Fire Properties of Polymer Composite Materials. Solid Mechanics and Its Applications, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5356-6_12

Download citation

Publish with us

Policies and ethics