Skip to main content

Vegetative Shoot Meristems

  • Chapter
Handbook of Maize: Its Biology

Abstract

The shoot apical meristem (SAM) is responsible for the indeterminate growth of the maize shoot. Formed during embryogenesis, the SAM consists of a pool of stem cells that divide to give rise to daughter cells that either maintain stem cell fate or are incorporated into leaf primordia, axillary shoot meristems or the growing stem tissues. Classical studies over the past century have revealed the cellular organization of the SAM, its ability to respond to systemic signals from distant organs, and behavior and fates of cells in this small but essential structure. More recently, we have started to understand molecular mechanisms of SAM function, an insight that has only been possible through forward genetic analysis. Several pathways for meristem maintenance and proliferation control are now known, however an integrated model of how the meristem functions awaits further genetic and genomic analysis. As the SAM is formed during embryogenesis and persists through the inflorescence phase, and its activity is intimately integrated with leaf initiation, readers are encouraged to also consult the chapters on Maize Embryogenesis by Wolfgang Werr, Axial patterning of the maize leaf by Toshi Foster and Marja Timmermans, Floral Transition in Maize by Joe Colasanti and Mike Muszynski and Inflorescences by Robert Schmidt and Erik Vollbrecht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbe, E. C., Phinney, B. O. and Baer, D. F. (1951). The growth of the shoot apex in maize: Internal features. Am. J. Bot.38, 744–751.

    Article  Google Scholar 

  • Benitez Alfonso, Y., Cantrill, L. and Jackson, D. (2007). Plasmodesmata: Cell–cell channels in plants (ed. Volkmann, D., Barlow, P. W. and Baluska, F.), New York: Springer.

    Google Scholar 

  • Bommert, P., Lunde, C., Nardmann, J., Vollbrecht, E., Running, M., Jackson, D., Hake, S. and Werr, W. (2005). Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase . Development132, 1235–1245.

    Article  CAS  PubMed  Google Scholar 

  • Bommineni, V. R., Cheng, P. C. and Walden, D. B. (1995). Reorganization of cells in the maize apical dome within six days of culture after microsurgery. Maydica40, 289–298.

    Google Scholar 

  • Bortiri, E., Jackson, D. and Hake, S. (2006). Advances in maize genomics: The emergence of positional cloning. Curr. Opin. Plant Biol.9, 164–171.

    Article  CAS  PubMed  Google Scholar 

  • Clark, J. K. and Sheridan, W. F. (1991). Isolation and Characterization of 51 embryo-specific Mutations of Maize . Plant Cell3, 935–951.

    Article  PubMed  Google Scholar 

  • Clark, S. E., Williams, R. W. and Meyerowitz, E. M. (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis . Cell89 575–585.

    Article  CAS  PubMed  Google Scholar 

  • Evans, M. M. S. and Barton, M. K. (1997). Genetics of angiosperm shoot apical meristem development. Ann. Rev. Plant Physiol. Plant Mol. Biol.48, 673–701.

    Article  CAS  Google Scholar 

  • Fletcher, L. C., Brand, U., Running, M. P., Simon, R. and Meyerowitz, E. M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems . Science283, 1911–1914.

    Article  CAS  PubMed  Google Scholar 

  • Giulini, A., Wang, J. and Jackson, D. (2004). Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1 . Nature430, 1031–1034.

    Article  CAS  PubMed  Google Scholar 

  • Hake, S. and Freeling, M. (1986). Analysis of genetic mosaics shows that the extra epidermal cell divisions in Knottedmutant maize plants are induced by adjacent mesophyll cells . Nature320, 621–623.

    Article  Google Scholar 

  • Hubbard, L., McSteen, P., Doebley, J. and Hake, S. (2002). Expression patterns and mutant phe-notype of teosinte branched1 correlate with growth suppression in maize and teosinte . Genetics162, 1927–1935.

    CAS  PubMed  Google Scholar 

  • Irish, E. and Nelson, T. (1988). Development of maize plants from cultured shoot apices. Planta175, 9–12.

    Article  Google Scholar 

  • Irish, EE. and Karlen, S (1998) Restoration of Juvenility in Maize Shoots by Meristem Culture Int. J Plant Sci. 159(5), 695. DOI: 10.1086/297587

    Article  Google Scholar 

  • Jackson, D. and Hake, S. (1999). Control of phyllotaxy in maize by the ABPHYL1gene. Development126, 315–323.

    CAS  PubMed  Google Scholar 

  • Jackson, D., Veit, B. and Hake, S. (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot . Development120, 405–413.

    CAS  Google Scholar 

  • Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P. and Tsiantis, M. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities . Curr. Biol.15, 1560–1565.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, S., Trotochaud, A. E. and Clark, S. E. (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase . Plant Cell11, 1925–1933.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, D. and Cooke, T. (1997). Fundamental concepts in the embryogenesis of dicotyledons: A morphological interpretation of embryo mutants . Plant Cell9, 1903–1919.

    Article  CAS  PubMed  Google Scholar 

  • Kerstetter, R. A., Laudencia-Chingcuanco, D., Smith, L. G. and Hake, S. (1997). Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development124, 3045–3054.

    CAS  PubMed  Google Scholar 

  • Kessler, S., Townsley, B. and Sinha, N. (2006). L1 division and differentiation patterns influence shoot apical meristem maintenance . Plant Physiol.141, 1349–1362.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. Y., Yuan, Z., Cilia, M., Khalfan-Jagani, Z. and Jackson, D. (2002). Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc. Natl. Acad. Sci.99, 4103–4108.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. Y., Yuan, Z. and Jackson, D. (2003). Developmental regulation and significance of KNOX protein trafficking in Arabidopsis . Development130, 4351–4362.

    Article  CAS  PubMed  Google Scholar 

  • Ledin, R. (1954). The vegetative shoot apex of Zea mays. Am. J. Bot.41, 11–17.

    Article  Google Scholar 

  • Long, J. A., Moan, E. I., Medford, J. I. and Barton, M. K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis . Nature379, 66–69.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, W. J., Bouche-Pillon, S., Jackson, D. P., Nguyen, L., Baker, L., Ding, B. and Hake, S. (1995) . Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science270, 1980–1983.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, K. F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G. and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem . Cell95, 805–815.

    Article  CAS  PubMed  Google Scholar 

  • McConnell, J. R. and Barton, M. K. (1998). Leaf polarity and meristem formation in Arabidopsis. Development125, 2935–2942.

    CAS  PubMed  Google Scholar 

  • McDaniel, C. N. and Poethig, R. S. (1988). Cell lineage patterns in the shoot apical meristem of the germinating maize embryo . Planta175, 13–22.

    Article  Google Scholar 

  • McSteen, P., Malcomber, S., Skirpan, A., Lunde, C., Wu, X., Kellogg, E. and Hake, S. (2007). Barren inflorescence2 Encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize . Plant Physiol.144, 1000–1011.

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki, H., Itoh, J., Hayashi, K., Hibara, K., Satoh-Nagasawa, N., Nosaka, M., Mukouhata, M., Ashikari, M., Kitano, H., Matsuoka, M. (2007). The small interfering RNA production pathway is required for shoot meristem initiation in rice . Proc. Natl. Acad. Sci.104, 14867–14871.

    Article  CAS  PubMed  Google Scholar 

  • Nardmann, J. and Werr, W. (2006). The shoot stem cell niche in angiosperms: Expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Mol. Biol. Evol.23, 2492–2504.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsu, K., Smith, M. B., Emrich, S. J., Borsuk, L. A., Zhou, R., Chen, T., Zhang, X., Timmermans, M. C., Beck, J., Buckner, B. (2007). Global gene expression analysis of the shoot apical mer-istem of maize . Plant J.52, 391–404.

    Article  CAS  PubMed  Google Scholar 

  • Ori, N., Juarez, M. T., Jackson, D., Yamaguchi, J., Banowetz, G. M. and Hake, S. (1999). Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter . Plant Cell11, 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  • Pilu, R., Consonni, G., Busti, E., MacCabe, A. P., Giulini, A., Dolfini, S. and Gavazzi, G. (2002). Mutations in two independent genes lead to suppression of the shoot apical meristem in maize . Plant Physiol.128, 502–511.

    Article  CAS  PubMed  Google Scholar 

  • Poethig, R. S., Coe, E. H. and Johri, M. M. (1986). Cell lineage patterns in maize embryogenesis: A clonal analysis . Dev. Biol.117, 392–404.

    Article  Google Scholar 

  • Randolph, L. F. (1936). Developmental morphology of the maize caryopsis. J. Agric. Res.53, 881–916.

    Google Scholar 

  • Reinhardt, D., Mandel, T. and Kuhlemeier, C. (2000). Auxin regulates the initiation and radial position of plant lateral organs . Plant Cell12, 507–518.

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt, D., Pesce, E. R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J. and Kuhlemeier , C. (2003) . Regulation of phyllotaxis by polar auxin transport . Nature426, 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Rivin, C., Sollinger, J., Strom, D. and Hardeman, K. (1995). Genetics and morphogenesis of dks8, a shootless mutant of maize. J. Cell Biochem. 459.

    Google Scholar 

  • Ruiz-Medrano, R., Xoconostle-Cazares, B. and Kragler, F. (2004). The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses . Curr. Opin. Plant Biol. 7, 641–650.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S. and Matsuoka, M. (2001). KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem . Genes Dev. 15, 581–590.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., Sakakibara, H., Kojima, M., Yamamoto, Y., Nagasaki, H., Inukai, Y., Sato, Y. and Matsuoka, M. (2006). Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice . Plant Physiol. 142, 54–62.

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., Sentoku, N., Miura, Y., Hirochika, H., Kitano, H. and Matsuoka, M. (1999). Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants . EMBO J. 18, 992–1002.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, N., Itoh, J. and Nagato, Y. (2003). The SHOOTLESS2 and SHOOTLESS1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells . Genetics 164, 335–346.

    CAS  PubMed  Google Scholar 

  • Sharman, B. C. (1942). Developmental anatomy of the shoot of Zea Mays L. Ann. Bot. 22, 245–282.

    Google Scholar 

  • Smith, L. G., Greene, B., Veit, B. and Hake, S. (1992). A dominant mutation in the maize home-obox gene, Knotted-1 , causes its ectopic expression in leaf cells with altered fates . Development 116, 21–30.

    CAS  PubMed  Google Scholar 

  • Steeves, T. A. and Sussex, I. M. (1989). Patterns in Plant Development. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sussex, I. M. (1989). Developmental programming of the shoot meristem. Cell 56, 225–229.

    Article  CAS  PubMed  Google Scholar 

  • Taguchi-Shiobara, F., Yuan, Z., Hake, S. and Jackson, D. (2001). The FASCIATED EAR2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev. 15, 2755–2766.

    Article  CAS  PubMed  Google Scholar 

  • Vega, S. H., Sauer, M., Orkwiszewski, J. A. and Poethig, R. S. (2002). The early phase change gene in maize . Plant Cell 14, 133–147.

    Article  CAS  PubMed  Google Scholar 

  • Veit, B., Briggs, S. P., Schmidt, R. J., Yanofsky, M. F. and Hake, S. (1998). Regulation of leaf initiation by the terminal ear 1 gene of maize . Nature 393, 166–168.

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht, E., Veit, B., Sinha, N. and Hake, S. (1991). The developmental gene Knotted-1 is a member of a maize homeobox gene family . Nature 350, 241–243.

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht, E., Reiser, L. and Hake, S. (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1 . Development 127, 3161–3172.

    CAS  PubMed  Google Scholar 

  • Williams, L. and Fletcher, J. C. (2005). Stem cell regulation in the Arabidopsis shoot apical mer-istem. Curr. Opin. Plant Biol. 8, 582–586.

    Article  CAS  PubMed  Google Scholar 

  • Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A. and Ori, N. (2005). Arabidopsis KNOX proteins activate cytokinin biosynthesis. Curr. Biol. 15, 1566–1571.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Madi, S., Borsuk, L., Nettleton, D., Elshire, R. J., Buckner, B., Janick-Buckner, D., Beck, J., Timmermans, M., Schnable, P. S. (2007). Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem . PLoS Genet. 3, e101.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Sarah Hake for stimulating my interest in shoot apical meristems, Erik Vollbrecht for insightful discussions and for Fig. 2a, and Peter Bommert and Robyn Johnston for comments on the manuscript. I also acknowledge generous support to my lab from the National Science Foundation and the US Department of Agriculture NRICGP.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jackson, D. (2009). Vegetative Shoot Meristems. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_1

Download citation

Publish with us

Policies and ethics