Perspectives on the State of Insect Transgenics

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Genetic transformation is a critical component to the fundamental genetic analysis of insect species and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which are currently subject to genomic sequence analysis, and intensive population control measures that must be improved for better efficacy and cost-effectiveness. Transposon-mediated germ-line transformation has been the ultimate goal for most fundamental and practical studies, and impressive strides have been made in recent development of transgene vector and marker systems for several mosquito species. This has resulted in rapid advances in functional genomic sequence analysis and new strategies for biological control based on conditional lethality. Importantly, advances have also been made in our ability to use these systems more effectively in terms of enhanced stability and targeting to specific genomic loci. Nevertheless, not all insects are currently amenable to germ-line transformation techniques, and thus advances in transient somatic expression and paratransgenesis have also been critical, if not preferable for some applications. Of particular importance is how this technology will be used for practical application. Early ideas for population replacement of indigenous pests with innocuous transgenic siblings by transposon-vector spread, may require reevaluation in terms of our current knowledge of the behavior of transposons currently available for transformation. The effective implementation of any control program using released transgenics, will also benefit from broadening the perspective of these control measures as being more mainstream than exotic.