Skip to main content

The Physics of Stereotactic Radiosurgery

  • Chapter

Abstract

In radiosurgery, instead of using a surgical knife when treating a patient, high-energy ionizing radiation is the tool of choice. To understand the tumoricidal effects of ionizing radiation, it is important to know how radiation interacts with matter. This chapter describes general concepts and principles in radiation physics, including basic physics that are applicable to stereotactic radiosurgery. Commonly used delivery systems are also briefly reviewed. This chapter is written for non-physics professionals, especially neurosurgeons and radiation oncologists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans RD. The Atomic Nucleus. Malabar, FL: Krieger, 1955.

    Google Scholar 

  2. Attix FH. Introduction to Radiological Physics and Radiation Dosimetry. New York: Wiley-Interscience, 1986.

    Book  Google Scholar 

  3. Khan FM. The Physics of Radiation Therapy, Second ed. Philadelphia: Lippincott Williams & Wilkins, 1992.

    Google Scholar 

  4. Johns HE, Cunningham JR. The Physics of Radiology, Fourth ed. Springfield, IL: Charles C Thomas Publisher, 1983.

    Google Scholar 

  5. Leksell L. Cerebral radiosurgery I. Gamma thalamotomy in two cases of intractable pain. Acta Chir Scand 1968; 134:585–595.

    CAS  PubMed  Google Scholar 

  6. Wu A, Maitz AH, Kalend AM, et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1990; 18:941–949.

    CAS  PubMed  Google Scholar 

  7. Simonova G, Novotny J Jr, Vladyka V, et al. Fractionated stereotactic radiotherapy with the Leksell gamma knife: feasibility study. Radiother Oncol 1995; 37:108–116.

    Article  CAS  PubMed  Google Scholar 

  8. Poffenbarger B. Viability of an isocentric cobalt-60 teletherapy unit for stereotactic radiosurgery. MSc thesis, McGill University, Montreal, Canada, 1998.

    Google Scholar 

  9. Poffenbarger B. Viability of an isocentric cobalt-60 teletherapy unit for stereotactic radiosurgery. Med Phys 1998; 25:1935–1943.

    Article  CAS  PubMed  Google Scholar 

  10. Bellerive M, Kooy HM, Loeffler J. Linac radiosurgery at the Joint Center for Radiation Therapy. Med Dosim 1998; 23:187–199.

    Article  CAS  PubMed  Google Scholar 

  11. Betti OO, Derechinsky VE. Hyperselective encelphalic irradiation with linear accelerator. Acta Neurochir Suppl 1984; 33:385–390.

    Google Scholar 

  12. Colombo F, Benedetti A, Pozza F, et al. External stereotactic irradiation by linear accelerator. Neurosurgery 1985; 16:154–160.

    Article  CAS  PubMed  Google Scholar 

  13. Hamilton JA, Lulu BA, Fosmire H, et al. Preliminary clinical experience with linear accelerator based spinal stereotactic radiosurgery. Neurosurgery 1995; 36:311–318.

    CAS  PubMed  Google Scholar 

  14. Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 1988; 14:373–381.

    CAS  PubMed  Google Scholar 

  15. Larsson B. Dosimetry and radiobiology of protons as applied to cancer therapy and neurosurgery. In: Thomas RH, Perez-Mendez V, eds. Advances in Radiation Protection and Dosimetry in Medicine. New York: Plenum, 1980:367–394.

    Google Scholar 

  16. Frankel KA, Phillips MH. Charged particle method: protons and heavy charged particles. In: Phillips MH, ed. In Physical Aspects of Stereotactic Radiosurgery. New York: Plenum, 1993.

    Google Scholar 

  17. Kjellberg RN, Shintani NA, Frantz AG. Proton beams in acromegaly. N Engl J Med 1968; 278:689–695.

    Article  CAS  PubMed  Google Scholar 

  18. Larsson B, Leksell L, Rexed B, et al. The high energy proton beam as a neurosurgical tool. Nature 1958; 182:1222–1223.

    Article  CAS  PubMed  Google Scholar 

  19. Breuer H, Smit BJ. Proton Therapy and Radiosurgery. Berlin, Heidelberg, New York: Springer-Verlag, 2000.

    Google Scholar 

  20. Wieszczycka W, Scharf WH. Proton Radiotherapy Accelerators. Singapore: World Scientific, 2001.

    Book  Google Scholar 

  21. Karzmark CJ, Nunan CS, Tanabe E. Medical Electron Accelerators. New York: McGraw-Hill, 1993.

    Google Scholar 

  22. Shiu AS, Kooy HM, Ewton JR, et al. Comparison of miniature multileaf collimation with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys 1997; 37:679–688.

    CAS  PubMed  Google Scholar 

  23. Arcovito G, Piermattei A, D’Abramo G et al. Dose measurements and calculations of small radiation fields for 9-MV x rays. Med Phys 1985; 12:779–784.

    Article  CAS  PubMed  Google Scholar 

  24. Bova FJ. Radiation physics. Neurosurg Clin N Am 1990; 1:909–931.

    CAS  PubMed  Google Scholar 

  25. Houdek PV, VanBuren JM, Fayos JV. Dosimetry of small radiation fields for 10-MV x rays. Med Phys 1983; 10:333–336.

    Article  CAS  PubMed  Google Scholar 

  26. Rice RK, Hansen JL, Svensson GH, et al. Measurements of dose distributions in small beams of 6 MV x-rays. Phys Med Biol 1987; 32:1087–1099.

    Article  CAS  PubMed  Google Scholar 

  27. Heydarian M, Hoban PW, Beddoe AH. A comparison of dosimetry techniques in stereotactic radiosurgery. Phys Med Biol 1996; 41:93–110.

    Article  CAS  PubMed  Google Scholar 

  28. Rustgi SN. Evaluation of dosimetric characteristics of a diamond detector for photon beam measurement. Med Phys 1995; 22:567–570.

    Article  CAS  PubMed  Google Scholar 

  29. Vatnitsky S, Jarvinen H. Application of natural diamond detector for the measurement of relative dose distribution in radiotherapy. Phys Med Biol 1993; 38:173–184.

    Article  CAS  PubMed  Google Scholar 

  30. Schell MC, Smith V, Larson DA, et al. Evaluation of radiosurgery techniques with cumulative dose volume histograms in linac-based stereotactic irradiation. Int J Radiat Oncol Biol Phys 1991; 20:1325–1330.

    CAS  PubMed  Google Scholar 

  31. Serago CF, Houdek PV, Bauer-Kirpes B, et al. Stereotactic radiosurgery: dose volume analysis of linear accelerator techniques. Med Phys 1992; 19:181–185.

    Article  CAS  PubMed  Google Scholar 

  32. Friedman WA, Bova FJ. The University of Florida radiosurgery system. Surg Neurol 1989; 32:334–342.

    Article  CAS  PubMed  Google Scholar 

  33. Meeks SL, Bova FJ, Friedman WA, et al. Linac scalpel radiosurgery at the University of Florida. Med Dosim 1998; 23:177–185.

    Article  CAS  PubMed  Google Scholar 

  34. Webb S. Optimization by simulated annealing of three-dimensional conformal treatment planning for radiation fields defined by a multileaf collimator. Phys Med Biol 1991; 36:1201–1226.

    Article  CAS  PubMed  Google Scholar 

  35. Adler JR, Cox RS. Preliminary clinical experience with the CyberKnife: image guided stereotactic radiosurgery. In: Kondziolka D, ed. Radiosurgery. Basel: Karger, 1995:317–326.

    Google Scholar 

  36. Maciunas RJ, Fitzpatrick M, Galloway RL, et al. Beyond stereotaxy: extreme levels of application accuracy are provided by implantable fiducial markers for interactive image guided neurosurgery. In: Maciunas RJ, ed. Interactive Image Guided Neurosurgery. Washington, DC: AANS, 1994:261–270.

    Google Scholar 

  37. Ma L, Kwok Y, Chin LS, et al. Comparative analyses of linac and Gamma Knife radiosurgery for trigeminal neuralgia treatments. Phys Med Biol 2005; 50:5217–5227.

    Article  CAS  PubMed  Google Scholar 

  38. Gerbi BJ, Higgins PD, Cho KH, et al. Linac-based stereotactic radiosurgery for treatment of trigeminal neuralgia. J Appl Clin Med Phys 2004; 5:80–90.

    Article  PubMed  Google Scholar 

  39. Verhey LJ, Smith V, Sergo CF. Comparison of radiosurgery treatment modalities based on physical dose distributions. Int J Radiat Oncol Biol Phys 1998; 40:495–505.

    Google Scholar 

  40. Plowman PN, Doughty D. Stereotactic radiosurgery, X: clinical isodosimetry of Gamma knife versus linear accelerator X-knife for pituitary and acoustic tumors. Clin Oncol 1999; 11:321–329.

    Article  CAS  Google Scholar 

  41. Perks JR, St. George EJ, Hamri KE, et al. Stereotactic radiosurgery XVI: isodose comparison of photon stereotactic radiosurgery techniques (Gamma knife vs. micromultileaf collimator linear accelerator) for acoustic neuroma-and potential clinical importance. Int J Radiat Oncol Biol Phys 2003; 57:1450–1459.

    PubMed  Google Scholar 

  42. Hartmann G, Lutz W, Arndt J, et al. Quality Assurance Program on Stereotactic Radiosurgery. Berlin: Springer-Verlag, 1995.

    Google Scholar 

  43. Schell M, Bova FJ, Larson DA, et al. Stereotactic radiosurgery. Report of Task Group 42. American Association of Physicists in Medicine (AAPM), Report No. 54. Medical Physics Publishing: Madison, WI, 1995.

    Google Scholar 

  44. Shaw E, Kline R, Gillin M, et al. Radiation therapy oncology group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 1993; 27:1231–1239.

    CAS  PubMed  Google Scholar 

  45. Fraass B, Doppke K, Hunt M, et al. American Association of Physicists in Medicine (AAPM): Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning. Med Phys 1998; 25:1773–1829.

    Article  CAS  PubMed  Google Scholar 

  46. Falco T, Lachaine M, Poffenbarger B, et al. Setup verification in linac-based radiosurgery. Med Phys 1999; 26:1972–1978.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, S., Palta, J. (2008). The Physics of Stereotactic Radiosurgery. In: Chin, L.S., Regine, W.F. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71070-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71070-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-71069-3

  • Online ISBN: 978-0-387-71070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics