Skip to main content

E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity

  • Chapter
  • First Online:
Between Pathogenicity and Commensalism

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 358))

Abstract

Escherichia coli is a paradigm for a versatile bacterial species which comprises harmless commensal as well as different pathogenic variants with the ability to either cause intestinal or extraintestinal diseases in humans and many animal hosts. Because of this broad spectrum of lifestyles and phenotypes, E. coli is a well-suited model organism to study bacterial evolution and adaptation to different growth conditions and niches. The geno- and phenotypic diversity, however, also hampers risk assessment and strain typing. A marked genome plasticity is the key to the great variability seen in this species. Acquisition of genetic information by horizontal gene transfer, gene loss as well as other genomic modifications, like DNA rearrangements and point mutations, can constantly alter the genome content and thus the fitness and competitiveness of individual variants in certain niches. Specific gene subsets and traits have been correlated with an increased potential of E. coli strains to cause intestinal or extraintestinal disease. Intestinal pathogenic E. coli strains can be reliably discriminated from non-pathogenic, commensal, or from extraintestinal E. coli pathogens based on genome content and phenotypic traits. An unambiguous distinction of extraintestinal pathogenic E. coli and commensals is, nevertheless, not so easy, as strains with the ability to cause extraintestinal infection are facultative pathogens and belong to the normal flora of many healthy individuals. Here, we compare insights into phylogeny, geno-, and phenotypic traits of commensal and pathogenic E. coli. We demonstrate that the borderline between extraintestinal virulence and intestinal fitness can be blurred as improved adaptability and competitiveness may promote intestinal colonization as well as extraintestinal infection by E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham S, Gordon DM, Chin J et al (2012) Molecular characterization of commensal Escherichia coli adapted to different compartments of the Porcine Gastrointestinal tract. Appl Environ Microbiol 78:6799–6803

    Article  PubMed  CAS  Google Scholar 

  • Adam E, Delbrassine L, Bouillot C et al (2010) Probiotic Escherichia coli Nissle 1917 activates DC and prevents house dust mite allergy through a TLR4-dependent pathway. Eur J Immunol 40:1995–2005

    Article  PubMed  CAS  Google Scholar 

  • Adler J, Hazelbauer GL, Dahl MM (1973) Chemotaxis toward sugars in Escherichia coli. J Bacteriol 115:824–847

    PubMed  CAS  Google Scholar 

  • Alsam S, Jeong SR, Sissons J, Dudley R, Kim KS, Khan NA (2006) Escherichia coli interactions with Acanthamoeba: a symbiosis with environmental and clinical implications. J Med Microbiol 55:689–694

    Article  PubMed  Google Scholar 

  • Altenhoefer A, Oswald S, Sonnenborn U et al (2004) The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 40:223–229

    Article  PubMed  CAS  Google Scholar 

  • Ambur OH, Davidsen T, Frye SA et al (2009) Genome dynamics in major bacterial pathogens. FEMS Microbiol Rev 33:453–470

    Article  PubMed  CAS  Google Scholar 

  • Anfora AT, Welch RA (2006) DsdX is the second D-serine transporter in uropathogenic Escherichia coli clinical isolate CFT073. J Bacteriol 188:6622–6628

    Article  PubMed  CAS  Google Scholar 

  • Anfora AT, Haugen BJ, Roesch P, Redford P, Welch RA (2007) Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073. Infect Immun 75:5298–5304

    Article  PubMed  CAS  Google Scholar 

  • Angiuoli SV, Salzberg SL (2011) Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 27(3):334–342

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008

    PubMed  Google Scholar 

  • Berger CN, Sodha SV, Shaw RK et al (2010) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12:2385–2397

    Article  PubMed  Google Scholar 

  • Bernier-Febreau C, du Merle L, Turlin E et al (2004) Use of deoxyribose by intestinal and extraintestinal pathogenic Escherichia coli strains: a metabolic adaptation involved in competitiveness. Infect Immun 72:6151–6156

    Article  PubMed  CAS  Google Scholar 

  • Bielaszewska M, Middendorf B, Tarr PI et al (2011) Chromosomal instability in enterohaemorrhagic Escherichia coli O157:H7: impact on adherence, tellurite resistance and colony phenotype. Mol Microbiol 79:1024–1044

    Article  PubMed  CAS  Google Scholar 

  • Bouckaert J, Mackenzie J, de Paz JL et al (2006) The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Mol Microbiol 61:1556–1568

    Article  PubMed  CAS  Google Scholar 

  • Boyd EF, Hartl DL (1998) Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol 180:1159–1165

    PubMed  CAS  Google Scholar 

  • Bronowski C, Smith SL, Yokota K et al (2008) A subset of mucosa-associated Escherichia coli isolates from patients with colon cancer, but not Crohn’s disease, share pathogenicity islands with urinary pathogenic E. coli. Microbiology 154:571–583

    Article  PubMed  CAS  Google Scholar 

  • Brzuszkiewicz E, Brüggemann H, Liesegang H et al (2006) How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 103:12879–12884

    Article  PubMed  CAS  Google Scholar 

  • Brzuszkiewicz E, Thürmer A, Schuldes J et al (2011) Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC). Arch Microbiol 193:883–891

    Article  PubMed  CAS  Google Scholar 

  • Castillo A, Eguiarte LE, Souza V (2005) A genomic population genetics analysis of the pathogenic enterocyte effacement island in Escherichia coli: the search for the unit of selection. Proc Natl Acad Sci USA 102:1542–1547

    Article  PubMed  CAS  Google Scholar 

  • Caugant DA, Levin BR, Selander RK (1981) Genetic diversity and temporal variation in the E. coli population of a human host. Genetics 98:467–490

    PubMed  CAS  Google Scholar 

  • Chaudhuri RR, Henderson IR (2012) The evolution of the Escherichia coli phylogeny. Infect Genet Evol 12:214–226

    Article  PubMed  Google Scholar 

  • Chaudhuri RR, Sebaihia M, Hobman JL et al (2010) Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One 5:e8801

    Article  PubMed  CAS  Google Scholar 

  • Chen SL, Hung CS, Xu J et al (2006) Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci USA 103:5977–5982

    Article  PubMed  CAS  Google Scholar 

  • Chen WH, Minguez P, Lercher MJ, Bork P (2012) OGEE: an online gene essentiality database. Nucl Acids Res 40:901–906

    Article  CAS  Google Scholar 

  • Clarke DJ, Chaudhuri RR, Martin HM et al (2011) Complete genome sequence of the Crohn’s disease-associated adherent-invasive Escherichia coli strain HM605. J Bacteriol 193:4540

    Article  PubMed  CAS  Google Scholar 

  • Clermont O, Bonacorsi S, Bingen E (2001) The Yersinia high-pathogenicity island is highly predominant in virulence-associated phylogenetic groups of Escherichia coli. FEMS Microbiol Lett 196:153–157

    Article  PubMed  CAS  Google Scholar 

  • Crossman LC, Chaudhuri RR, Beatson SA et al (2010) A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. J Bacteriol 192:5822–5831

    Article  PubMed  CAS  Google Scholar 

  • Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8:26–38

    PubMed  CAS  Google Scholar 

  • Diard M, Baeriswyl S, Clermont O et al (2007) Caenorhabditis elegans as a simple model to study phenotypic and genetic virulence determinants of extraintestinal pathogenic Escherichia coli. Microbes Infect 9:214–223

    Article  PubMed  CAS  Google Scholar 

  • Diard M, Garry L, Selva M, Mosser T, Denamur E, Matic I (2010) Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. J Bacteriol 192:4885–4893

    Article  PubMed  CAS  Google Scholar 

  • Diaz E, Ferrandez A, Prieto MA, Garcia JL (2001) Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Bio Rev 65:523–569

    Google Scholar 

  • Didelot X, Meric G, Falush D, Darling AE (2012) Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. BMC Genomics 13:256

    Article  PubMed  Google Scholar 

  • Dixit SM, Gordon DM, Wu XY, Chapman T, Kailasapathy K, Chin JJ (2004) Diversity analysis of commensal porcine Escherichia coli—associations between genotypes and habitat in the porcine gastrointestinal tract. Microbiology 150:1735–1740

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt U (2005) (Patho-)Genomics of Escherichia coli. Int J Med Microbiol 295:357–371

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt U, Agerer F, Michaelis K et al (2003) Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185:1831–1840

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Paramo P, Grenet K, Le Menac’h A et al (2004a) Large-scale population structure of human commensal Escherichia coli isolates. Appl Environ Microbiol 70:5698–5700

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Paramo P, Clermont O, Blanc-Potard AB, Bui H, Le Bouguenec C, Denamur E (2004b) A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol 21:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Paramo P, Le Menac’h A, Le Gall T et al (2006) Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ Microbiol 8:1975–1984

    Article  PubMed  CAS  Google Scholar 

  • Etchuuya R, Ito M, Kitano S, Shigi F, Sobue R, Maeda S (2011) Cell-to-cell transformation in Escherichia coli: a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone. PLoS One 6:e16355

    Article  PubMed  CAS  Google Scholar 

  • Fabich AJ, Jones SA, Chowdhury FZ et al (2008) Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Feldmann F, Sorsa LJ, Hildinger K, Schubert S (2007) The salmochelin siderophore receptor IroN contributes to invasion of urothelial cells by extraintestinal pathogenic Escherichia coli in vitro. Infect Immun 75:3183–3187

    Article  PubMed  CAS  Google Scholar 

  • Fricke WF, Wright MS, Lindell AH et al (2008) Insights into the environmental resistance gene pool from the genome sequence of the multidrug-resistant environmental isolate Escherichia coli SMS-3-5. J Bacteriol 190:6779–6794

    Article  PubMed  CAS  Google Scholar 

  • Goldenfeld N, Woese C (2007) Biology’s next revolution. Nature 445:369

    Article  PubMed  CAS  Google Scholar 

  • Gordon DM, Cowling A (2003) The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 149:3575–3586

    Article  PubMed  CAS  Google Scholar 

  • Grasselli E, Francois P, Gutacker M et al (2008) Evidence of horizontal gene transfer between human and animal commensal Escherichia coli strains identified by microarray. FEMS Immunol Med Microbiol 53:351–358

    Article  PubMed  CAS  Google Scholar 

  • Grozdanov L, Zähringer U, Blum-Oehler G et al (2002) A single nucleotide exchange in the wzy gene is responsible for the semi-rough O6 lipopolysaccharide phenotype and serum sensitivity of Escherichia coli strain Nissle 1917. J Bacteriol 184:5912–5925

    Article  PubMed  CAS  Google Scholar 

  • Grozdanov L, Raasch C, Schulze J et al (2004) Analysis of the genome structure of the non-pathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol 186:5432–5441

    Article  PubMed  CAS  Google Scholar 

  • Gunther NWt, Snyder JA, Lockatell V, Blomfield I, Johnson DE, Mobley HL (2002) Assessment of virulence of uropathogenic Escherichia coli type 1 fimbrial mutants in which the invertible element is phase-locked on or off. Infect Immun 70:3344–3354

    Article  PubMed  CAS  Google Scholar 

  • Güttsches AK, Loseke S, Zähringer U et al (2012) Anti-inflammatory modulation of immune response by probiotic Escherichia coli Nissle 1917 in human blood mononuclear cells. Innate Immun 18:204–216

    Article  PubMed  CAS  Google Scholar 

  • Hacker J, Dobrindt U (eds) (2006) Pathogenomics: Genome analysis of pathogenic microbes. Wiley-VCH, Weinheim

    Google Scholar 

  • Hacker J, Hentschel U, Dobrindt U (2003) Prokaryotic chromosomes and disease. Science 301:790–793

    Article  PubMed  CAS  Google Scholar 

  • Hafez M, Hayes K, Goldrick M, Warhurst G, Grencis R, Roberts IS (2009) The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction. Infect Immun 77:2995–3003

    Article  PubMed  CAS  Google Scholar 

  • Halachev MR, Loman NJ, Pallen MJ (2011) Calculating orthologs in Bacteria and Archaea: a divide and conquer approach. PLoS One 6:e28388

    Article  PubMed  CAS  Google Scholar 

  • Hancock V, Ferrieres L, Klemm P (2008) The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology 154:167–175

    Article  PubMed  CAS  Google Scholar 

  • Hancock V, Dahl M, Klemm P (2010a) Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. J Med Microbiol 59:392–399

    Article  PubMed  Google Scholar 

  • Hancock V, Vejborg RM, Klemm P (2010b) Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation. Mol Genet Genomics 284:437–454

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Ichimura T, Mizoguchi H et al (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55:137–149

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Makino K, Ohnishi M et al (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22

    Article  PubMed  CAS  Google Scholar 

  • Hejnova J, Dobrindt U, Nemcova R et al (2005) Characterization of the flexible genome complement of the commensal Escherichia coli strain A0 34/86 (O83:K24:H31). Microbiology 151:385–398

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson H (2009) Order and disorder during Escherichia coli divergence. PLoS Genet 5:e1000335

    Article  PubMed  CAS  Google Scholar 

  • Hill CW, Feulner G, Brody MS, Zhao S, Sadosky AB, Sandt CH (1995) Correlation of Rhs elements with Escherichia coli population structure. Genetics 141:15–24

    PubMed  CAS  Google Scholar 

  • Ho Sui SJ, Fedynak A, Hsiao WW, Langille MG, Brinkman FS (2009) The association of virulence factors with genomic islands. PLoS One 4:e8094

    Article  PubMed  CAS  Google Scholar 

  • Holden N, Pritchard L, Toth I (2009) Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol Rev 33:689–703

    Article  PubMed  CAS  Google Scholar 

  • Huebner C, Ding Y, Petermann I, Knapp C, Ferguson LR (2011) The probiotic Escherichia coli Nissle 1917 reduces pathogen invasion and modulates cytokine expression in Caco-2 cells infected with Crohn’s disease-associated E. coli LF82. Appl Environ Microbiol 77:2541–2544

    Article  PubMed  CAS  Google Scholar 

  • Hung CS, Bouckaert J, Hung D et al (2002) Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44:903–915

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Scornavacca C (2012) Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 61:1061–1067

    Google Scholar 

  • Iguchi A, Thomson NR, Ogura Y et al (2009) Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J Bacteriol 191:347–354

    Article  PubMed  CAS  Google Scholar 

  • Jackson RW, Vinatzer B, Arnold DL, Dorus S, Murillo J (2011) The influence of the accessory genome on bacterial pathogen evolution. Mob Genet Elements 1:55–65

    Article  PubMed  Google Scholar 

  • Johnson TJ, Kariyawasam S, Wannemuehler Y et al (2007) The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189:3228–3236

    Article  PubMed  CAS  Google Scholar 

  • Johnson JR, Johnston B, Kuskowski MA, Nougayrède JP, Oswald E (2008) Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J Clin Microbiol 46:3906–3911

    Article  PubMed  Google Scholar 

  • Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    Article  PubMed  CAS  Google Scholar 

  • Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140

    Article  PubMed  CAS  Google Scholar 

  • Karch H, Denamur E, Dobrindt U et al (2012) The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak. EMBO Mol Med 4:841–848

    Article  PubMed  CAS  Google Scholar 

  • Kato J, Hashimoto M (2007) Construction of consecutive deletions of the Escherichia coli chromosome. Mol Systems Biol 3:132

    Google Scholar 

  • Klemm P, Roos V, Ulett GC, Svanborg C, Schembri MA (2006) Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972: the taming of a pathogen. Infect Immun 74:781–785

    Article  PubMed  CAS  Google Scholar 

  • Köhler CD, Dobrindt U (2011) What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol 301:642–647

    Article  PubMed  Google Scholar 

  • Koli P, Sudan S, Fitzgerald D, Adhya S, Kar S (2011) Conversion of commensal Escherichia coli K-12 to an invasive form via expression of a mutant histone-like protein. MBio 2(5):e00182–11

    Google Scholar 

  • Krause DO, Little AC, Dowd SE, Bernstein CN (2011) Complete genome sequence of adherent invasive Escherichia coli UM146 isolated from Ileal Crohn’s disease biopsy tissue. J Bacteriol 193:583

    Article  PubMed  CAS  Google Scholar 

  • Krieger JN, Dobrindt U, Riley DE, Oswald E (2011) Acute Escherichia coli prostatitis in previously health young men: bacterial virulence factors, antimicrobial resistance, and clinical outcomes. Urology 77:1420–1425

    Article  PubMed  Google Scholar 

  • Kruis W, Chrubasik S, Boehm S, Stange C, Schulze J (2012) A double-blind placebo-controlled trial to study therapeutic effects of probiotic Escherichia coli Nissle 1917 in subgroups of patients with irritable bowel syndrome. Int J Colorectal Dis 27:467–474

    Article  PubMed  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  Google Scholar 

  • Laing CR, Buchanan C, Taboada EN et al (2009) In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence. BMC Genomics 10:287

    Article  PubMed  CAS  Google Scholar 

  • Lane MC, Lockatell V, Monterosso G et al (2005) Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73:7644–7656

    Article  PubMed  CAS  Google Scholar 

  • Lane MC, Alteri CJ, Smith SN, Mobley HL (2007) Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A 104:16669–16674

    Article  PubMed  CAS  Google Scholar 

  • Le Bouguénec C, Schouler C (2011) Sugar metabolism, an additional virulence factor in enterobacteria. Int J Med Microbiol 301:1–6

    Article  PubMed  CAS  Google Scholar 

  • Le Gall T, Clermont O, Gouriou S et al (2007) Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol 24:2373–2384

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Yu JK, Park K, Oh EJ, Kim SY, Park YJ (2010) Phylogenetic groups and virulence factors in pathogenic and commensal strains of Escherichia coli and their association with blaCTX-M. Ann Clin Lab Sci 40:361–367

    PubMed  Google Scholar 

  • Leopold SR, Sawyer SA, Whittam TS, Tarr PI (2011) Obscured phylogeny and possible recombinational dormancy in Escherichia coli. BMC Evol Biol 11:183

    Article  PubMed  Google Scholar 

  • Léveillé S, Caza M, Johnson JR, Clabots C, Sabri M, Dozois CM (2006) Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor. Infect Immun 74:3427–3436

    Article  PubMed  CAS  Google Scholar 

  • Li B, Sun JY, Han LZ, Huang XH, Fu Q, Ni YX (2010) Phylogenetic groups and pathogenicity island markers in fecal Escherichia coli isolates from asymptomatic humans in China. Appl Environ Microbiol 76:6698–6700

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AL, Henderson TA, Vigil PD, Mobley HL (2009) Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol 191:3469–3481

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Zhang X, Zhu Y, Kim KS, Yang J, Jin Q (2011) Complete genome sequence of the neonatal-meningitis-associated Escherichia coli strain CE10. J Bacteriol 193:7005

    Article  PubMed  CAS  Google Scholar 

  • Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60:708–720

    Article  PubMed  CAS  Google Scholar 

  • Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT (2011) Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci U S A 108:7200–7205

    Article  PubMed  CAS  Google Scholar 

  • Mau B, Glasner JD, Darling AE, Perna NT (2006) Genome-wide detection and analysis of homologous recombination among sequenced strains of Escherichia coli. Genome Biol 7:R44

    Article  PubMed  CAS  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    Article  PubMed  CAS  Google Scholar 

  • Medini D, Serruto D, Parkhill J et al (2008) Microbiology in the post-genomic era. Nat Rev Microbiol 6:419–430

    PubMed  CAS  Google Scholar 

  • Mellmann A, Harmsen D, Cummings CA et al (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751

    Article  PubMed  CAS  Google Scholar 

  • Mesibov R, Adler J (1972) Chemotaxis toward amino acids in Escherichia coli. J Bacteriol 112:315–326

    PubMed  CAS  Google Scholar 

  • Milkman R, Bridges MM (1990) Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126:505–517

    PubMed  CAS  Google Scholar 

  • Miquel S, Peyretaillade E, Claret L et al. (2010) Complete genome sequence of Crohn’s disease-associated adherent-invasive E. coli strain LF82. PLoS One 5:e12714

    Google Scholar 

  • Monteiro C, Saxena I, Wang X et al (2009) Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ Microbiol 11:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Mordhorst IL, Claus H, Ewers C et al (2009) O-acetyltransferase gene neuO is segregated according to phylogenetic background and contributes to environmental desiccation resistance in Escherichia coli K1. Environ Microbiol 11:3154–3165

    Article  PubMed  CAS  Google Scholar 

  • Moriel DG, Bertoldi I, Spagnuolo A et al (2010) Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc Natl Acad Sci U S A 107:9072–9077

    Article  PubMed  CAS  Google Scholar 

  • Nash JH, Villegas A, Kropinski AM et al (2010) Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC Genomics 11:667

    Article  PubMed  CAS  Google Scholar 

  • Nougayrède JP, Homburg S, Taieb F et al (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851

    Article  PubMed  CAS  Google Scholar 

  • Nowrouzian FL, Oswald E (2012) Escherichia coli strains with the capacity for long-term persistence in the bowel microbiota carry the potentially genotoxic pks island. Microb Pathog 53:180–182

    Article  PubMed  CAS  Google Scholar 

  • Nowrouzian F, Adlerberth I, Wold AE (2001) P fimbriae, capsule and aerobactin characterize colonic resident Escherichia coli. Epidemiol Infect 126:11–18

    PubMed  CAS  Google Scholar 

  • Nowrouzian F, Hesselmar B, Saalman R et al (2003) Escherichia coli in infants’ intestinal microflora: colonization rate, strain turnover, and virulence gene carriage. Pediatr Res 54:8–14

    Article  PubMed  CAS  Google Scholar 

  • Nowrouzian FL, Wold AE, Adlerberth I (2005) Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J Infect Dis 191:1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Nowrouzian FL, Adlerberth I, Wold AE (2006) Enhanced persistence in the colonic microbiota of Escherichia coli strains belonging to phylogenetic group B2: role of virulence factors and adherence to colonic cells. Microbes Infect 8:834–840

    Article  PubMed  CAS  Google Scholar 

  • Nowrouzian FL, Ostblom AE, Wold AE, Adlerberth I (2009) Phylogenetic group B2 Escherichia coli strains from the bowel microbiota of Pakistani infants carry few virulence genes and lack the capacity for long-term persistence. Clin Microbiol Infect 15:466–472

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Selander RK (1984) Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157:690–693

    PubMed  CAS  Google Scholar 

  • Ogura Y, Ooka T, Iguchi A et al (2009) Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci USA 106:17939–17944

    Article  PubMed  CAS  Google Scholar 

  • Olier M, Marcq I, Salvador-Cartier C et al. (2012) Genotoxicity of Escherichia coli Nissle 1917 strain cannot be dissociated from its probiotic activity. Gut Microbes 3(6):501–509

    Google Scholar 

  • Oshima K, Toh H, Ogura Y et al (2008) Complete genome sequence and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a healthy adult. DNA Res 15:375–386

    Article  PubMed  CAS  Google Scholar 

  • Ostblom A, Adlerberth I, Wold AE, Nowrouzian FL (2011) Pathogenicity island markers, virulence determinants malX and usp, and the capacity of Escherichia coli to persist in infants’ commensal microbiotas. Appl Environ Microbiol 77:2303–2308

    Article  PubMed  CAS  Google Scholar 

  • Perna NT, Plunkett G 3rd, Burland V et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533

    Article  PubMed  CAS  Google Scholar 

  • Porcheron G, Chanteloup NK, Trotereau A, Bree A, Schouler C (2012) Effect of fructooligosaccharide metabolism on chicken colonization by an extra-intestinal pathogenic Escherichia coli strain. PLoS One 7:e35475

    Article  PubMed  CAS  Google Scholar 

  • Putze J, Hennequin C, Nougayrède JP et al (2009) Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 77:4696–4703

    Article  PubMed  CAS  Google Scholar 

  • Rasko DA, Rosovitz MJ, Myers GS et al (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893

    Article  PubMed  CAS  Google Scholar 

  • Rasko DA, Webster DR, Sahl JW et al (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365:709–717

    Article  PubMed  CAS  Google Scholar 

  • Reid SD, Herbelin CJ, Bumbaugh AC, Selander RK, Whittam TS (2000) Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406:64–67

    Article  PubMed  CAS  Google Scholar 

  • Ren CP, Chaudhuri RR, Fivian A et al (2004) The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J Bacteriology 186:3547–3560

    Article  CAS  Google Scholar 

  • Roesch PL, Redford P, Batchelet S et al (2003) Uropathogenic Escherichia coli use D-serine deaminase to modulate infection of the murine urinary tract. Mol Microbiol 49:55–67

    Article  PubMed  CAS  Google Scholar 

  • Rohde H, Qin J, Cui Y et al (2011) Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med 365:718–724

    Article  PubMed  CAS  Google Scholar 

  • Roos V, Schembri MA, Ulett GC, Klemm P (2006) Asymptomatic bacteriuria Escherichia coli strain 83972 carries mutations in the foc locus and is unable to express F1C fimbriae. Microbiology 152:1799–1806

    Article  PubMed  CAS  Google Scholar 

  • Rouquet G, Porcheron G, Barra C et al (2009) A metabolic operon in extraintestinal pathogenic Escherichia coli promotes fitness under stressful conditions and invasion of eukaryotic cells. J Bacteriol 191:4427–4440

    Article  PubMed  CAS  Google Scholar 

  • Rump LV, Strain EA, Cao G et al (2011) Draft genome sequences of six Escherichia coli isolates from the stepwise model of emergence of Escherichia coli O157:H7. J Bacteriol 193:2058–2059

    Article  PubMed  CAS  Google Scholar 

  • Sabaté M, Moreno E, Perez T, Andreu A, Prats G (2006) Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Clin Microbiol Infect 12:880–886

    Article  PubMed  Google Scholar 

  • Sahl JW, Steinsland H, Redman JC et al (2011) A comparative genomic analysis of diverse clonal types of enterotoxigenic Escherichia coli reveals pathovar-specific conservation. Infect Immun 79:950–960

    Article  PubMed  CAS  Google Scholar 

  • Sahl JW, Matalka MN, Rasko DA (2012) Phylomark, a tool to identify conserved phylogenetic markers from whole-genome alignments. Appl Environ Microbiol 78:4884–4892

    Article  PubMed  CAS  Google Scholar 

  • Salvador E, Wagenlehner F, Köhler CD et al (2012) Comparison of asymptomatic bacteriuria Escherichia coli isolates from healthy individuals versus those from hospital patients shows that long-term bladder colonization selects for attenuated virulence phenotypes. Infect Immun 80:668–678

    Article  PubMed  CAS  Google Scholar 

  • Schierack P, Walk N, Ewers C et al (2008) ExPEC-typical virulence-associated genes correlate with successful colonization by intestinal E. coli in a small piglet group. Environ Microbiol 10:1742–1751

    Article  PubMed  Google Scholar 

  • Schierack P, Kleta S, Tedin K et al. (2011) E. coli Nissle 1917 affects Salmonella adhesion to porcine intestinal epithelial cells. PLoS One 6:e14712

    Google Scholar 

  • Schlee M, Wehkamp J, Altenhoefer A, Oelschlaeger TA, Stange EF, Fellermann K (2007) Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun 75:2399–2407

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Dobrindt U, Middendorf B et al (2011) Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands. BMC Microbiol 11:210

    Article  PubMed  CAS  Google Scholar 

  • Schouler C, Taki A, Chouikha I, Moulin-Schouleur M, Gilot P (2009) A genomic island of an extraintestinal pathogenic Escherichia coli Strain enables the metabolism of fructooligosaccharides, which improves intestinal colonization. J Bacteriol 191:388–393

    Article  PubMed  CAS  Google Scholar 

  • Schubert S, Darlu P, Clermont O et al (2009) Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog 5:e1000257

    Article  PubMed  CAS  Google Scholar 

  • Schultz M (2008) Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm Bowel Dis 14:1012–1018

    Article  PubMed  Google Scholar 

  • Schwan WR (2008) Flagella allow uropathogenic Escherichia coli ascension into murine kidneys. Int J Med Microbiol 298:441–447

    Article  PubMed  CAS  Google Scholar 

  • Sears HJ, Brownlee I (1952) Further observations on the persistence of individual strains of Escherichia coli in the intestinal tract of man. J Bacteriol 63:47–57

    PubMed  CAS  Google Scholar 

  • Sears HJ, Brownlee I, Uchiyama JK (1950) Persistence of individual strains of Escherichia coli in the intestinal tract of man. J Bacteriol 59:293–301

    PubMed  CAS  Google Scholar 

  • Shepard SM, Danzeisen JL, Isaacson RE, Seemann T, Achtman M, Johnson TJ (2012) Genome sequences and phylogenetic analysis of K88- and F18-positive porcine enterotoxigenic Escherichia coli. J Bacteriol 194:395–405

    Article  PubMed  CAS  Google Scholar 

  • Sims GE, Kim SH (2011) Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs). Proc Natl Acad Sci USA 108:8329–8334

    Article  PubMed  CAS  Google Scholar 

  • Smajs D, Micenkova L, Smarda J et al (2010) Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol 10:288

    Article  PubMed  CAS  Google Scholar 

  • Söderblom T, Laestadius A, Oxhamre C, Aperia A, Richter-Dahlfors A (2002) Toxin-induced calcium oscillations: a novel strategy to affect gene regulation in target cells. Int J Med Microbiol 291:511–515

    Article  PubMed  Google Scholar 

  • Stahlhut SG, Tchesnokova V, Struve C et al (2009) Comparative structure-function analysis of mannose-specific FimH adhesins from Klebsiella pneumoniae and Escherichia coli. J Bacteriol 191:6592–6601

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Ott M (2008) Efficient computation of the phylogenetic likelihood function on multi-gene alignments and multi-core architectures. Philos Trans R Soc Lond B Biol Sci 363:3977–3984

    Article  PubMed  Google Scholar 

  • Steinberg KM, Levin BR (2007) Grazing protozoa and the evolution of the Escherichia coli O157:H7 Shiga toxin-encoding prophage. Proc Biol Sci 274:1921–1929

    Article  PubMed  Google Scholar 

  • Stetinova V, Smetanova L, Kvetina J, Svoboda Z, Zidek Z, Tlaskalova-Hogenova H (2010) Caco-2 cell monolayer integrity and effect of probiotic Escherichia coli Nissle 1917 components. Neuro Endocrinol Lett 31(Suppl 2):51–56

    PubMed  CAS  Google Scholar 

  • Storm DW, Koff SA, Horvath DJ Jr, Li B, Justice SS (2011) In vitro analysis of the bactericidal activity of Escherichia coli Nissle 1917 against pediatric uropathogens. J Urol 186:1678–1683

    Article  PubMed  CAS  Google Scholar 

  • Sundén F, Håkansson L, Ljunggren E, Wullt B (2010) Escherichia coli 83972 bacteriuria protects against recurrent lower urinary tract infections in patients with incomplete bladder emptying. J Urol 184:179–185

    Article  PubMed  Google Scholar 

  • Tenaillon O, Skurnik D, Picard B, Denamur E (2010) The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8:207–217

    Article  PubMed  CAS  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955

    Article  PubMed  CAS  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    Article  PubMed  CAS  Google Scholar 

  • Toh H, Oshima K, Toyoda A et al (2010) Complete genome sequence of the wild-type commensal Escherichia coli strain SE15, belonging to phylogenetic group B2. J Bacteriol 192:1165–1166

    Article  PubMed  CAS  Google Scholar 

  • Touchon M, Hoede C, Tenaillon O et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344

    Article  PubMed  CAS  Google Scholar 

  • Uhlén P, Laestadius A, Jahnukainen T et al (2000) Alpha-haemolysin of uropathogenic E. coli induces Ca2 + oscillations in renal epithelial cells. Nature 405:694–697

    Article  PubMed  Google Scholar 

  • Ukena SN, Westendorf AM, Hansen W et al (2005) The host response to the probiotic Escherichia coli strain Nissle 1917: specific up-regulation of the proinflammatory chemokine MCP-1. BMC Med Genet 6:43

    Article  PubMed  CAS  Google Scholar 

  • Ukena SN, Singh A, Dringenberg U et al (2007) Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2:e1308

    Article  PubMed  CAS  Google Scholar 

  • Vejborg RM, Friis C, Hancock V, Schembri MA, Klemm P (2010) A virulent parent with probiotic progeny: comparative genomics of Escherichia coli strains CFT073, Nissle 1917 and ABU 83972. Mol Genet Genomics 283:469–484

    Article  PubMed  CAS  Google Scholar 

  • Vieira G, Sabarly V, Bourguignon PY et al (2011) Core and panmetabolism in Escherichia coli. J Bacteriol 193:1461–1472

    Article  PubMed  CAS  Google Scholar 

  • von Buenau R, Jaekel L, Schubotz E, Schwarz S, Stroff T, Krueger M (2005) Escherichia coli strain Nissle 1917: significant reduction of neonatal calf diarrhea. J Dairy Sci 88:317–323

    Article  Google Scholar 

  • Walk ST, Alm EW, Gordon DM et al (2009) Cryptic lineages of the genus Escherichia. Appl Environ Microbiol 75:6534–6544

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Rochon M, Lamprokostopoulou A, Lunsdorf H, Nimtz M, Römling U (2006) Impact of biofilm matrix components on interaction of commensal Escherichia coli with the gastrointestinal cell line HT-29. Cell Mol Life Sci 63:2352–2363

    Article  PubMed  CAS  Google Scholar 

  • Welch RA, Burland V, Plunkett G 3rd et al (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024

    Article  PubMed  CAS  Google Scholar 

  • Whittam TS, Wolfe ML, Wachsmuth IK, Ørskov F, Ørskov I, Wilson RA (1993) Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun 61:1619–1629

    PubMed  CAS  Google Scholar 

  • Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976

    Article  PubMed  CAS  Google Scholar 

  • Wirth T, Falush D, Lan R et al (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151

    Article  PubMed  CAS  Google Scholar 

  • Wold AE, Caugant DA, Lidin-Janson G, de Man P, Svanborg C (1992) Resident colonic Escherichia coli strains frequently display uropathogenic characteristics. J Infect Dis 165:46–52

    Article  PubMed  CAS  Google Scholar 

  • Zdziarski J, Svanborg C, Wullt B, Hacker J, Dobrindt U (2008) Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation? Infect Immun 76:695–703

    Article  PubMed  CAS  Google Scholar 

  • Zdziarski J, Brzuszkiewicz E, Wullt B et al (2010) Host imprints on bacterial genomes—rapid, divergent evolution in individual patients. PLoS Pathog 6:e1001078

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Li X, Liu B et al (2010) Derivation of Escherichia coli O157:H7 from its O55:H7 precursor. PLoS One 5:e8700

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work related to this subject was supported by the German Research Foundation (SFB 479, TP A1; DO 789/3-1; DO 789/4-1). Our studies were carried out within the European Virtual Institute for Functional Genomics of Bacterial Pathogens (CEE LSHB-CT-2005-512061) and the ERA-NET PathoGenoMics I consortium ‘Deciphering the intersection of extraintestinal pathogenic and commensal Escherichia coli’ (Federal Ministry of Education and Research (BMBF) grant no. 0313937A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Dobrindt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leimbach, A., Hacker, J., Dobrindt, U. (2013). E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity. In: Dobrindt, U., Hacker, J., Svanborg, C. (eds) Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_303

Download citation

Publish with us

Policies and ethics