Skip to main content

Mucosal Immunity and HIV-1 Infection: Applications for Mucosal AIDS Vaccine Development

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 354))

Abstract

Natural transmission of human immunodeficiency virus type 1 (HIV-1) occurs through gastrointestinal and vaginal mucosa. These mucosal tissues are major reservoirs for initial HIV replication and amplification, and the sites of rapid CD4+ T cell depletion. In both HIV-infected humans and SIV-infected macaques, massive loss of CD4+ CCR5+ memory T cells occurs in the gut and vaginal mucosa within the first 10–14 days of infection. Induction of local HIV-specific immune responses by vaccines may facilitate effective control of HIV or SIV replication at these sites. Vaccines that induce mucosal responses, in particular CD8+ cytotoxic T lymphocytes (CTL), have controlled viral replication at mucosal sites and curtailed systemic dissemination. Thus, there is strong justification for development of next generation vaccines that induce mucosal immune effectors against HIV-1 including CD8+ CTL, CD4+ T helper cells and secretory IgA. In addition, further understanding of local innate mechanisms that impact early viral replication will greatly inform future vaccine development. In this review, we examine the current knowledge concerning mucosal AIDS vaccine development. Moreover, we propose immunization strategies that may be able to elicit an effective immune response that can protect against AIDS as well as other mucosal infections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acierno PM, Schmitz JE, Gorgone DA et al (2006) Preservation of functional virus-specific memory CD8+ T lymphocytes in vaccinated, simian human immunodeficiency virus-infected rhesus monkeys. J Immunol 176:5338–5345

    PubMed  CAS  Google Scholar 

  • Ahlers JD, Belyakov IM (2009a) Strategies for optimizing targeting and delivery of mucosal HIV vaccines. Eur J Immunol 39:2657–2669

    Article  PubMed  CAS  Google Scholar 

  • Ahlers JD, Belyakov IM (2009b) Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines. Trends Mol Med 15:263–274

    Article  PubMed  CAS  Google Scholar 

  • Ahlers JD, Belyakov IM (2010a) Lessons learned from natural infection: focusing on the design of protective T cell vaccines for HIV/AIDS. Trends Immunol 31:120–130

    Article  PubMed  CAS  Google Scholar 

  • Ahlers JD, Belyakov IM (2010b) Memories that last forever: strategies for optimizing vaccine T-cell memory. Blood 115:1678–1689

    Article  PubMed  CAS  Google Scholar 

  • Ahlers JD, Belyakov IM (2010c) New paradigms for generating effective CD8+ T cell responses against HIV-1/AIDS. Discov Med 9:528–537

    PubMed  Google Scholar 

  • Ahlers JD, Belyakov IM, Matsui S et al (2001a) Mechanisms of cytokine synergy essential for vaccine protection against viral challenge. Int Immunol 13:897–908

    Article  PubMed  CAS  Google Scholar 

  • Ahlers JD, Belyakov IM, Matsui S et al (2001b) Signals delivered through TCR instruct IL-12R expression: IL-12 and TNFα synergize for IL-12R expression at low antigen dose. Int Immunol 13:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Ahlers JD, Belyakov IM, Terabe M et al (2002) A push-pull approach to maximize vaccine efficacy: abrogating suppression with an IL-13 inhibitor while augmenting help with GM-CSF and CD40L. Proc Natl Acad Sci USA 99:13020–13025

    Article  PubMed  CAS  Google Scholar 

  • Ahlers JD, Belyakov IM, Berzofsky JA (2003) Cytokine, chemokine and costimulatory molecule modulation to enhance efficacy of HIV vaccines. Curr Mol Med 3:285–301

    Article  PubMed  CAS  Google Scholar 

  • Alexander-Miller MA, Leggatt GR, Berzofsky JA (1996) Selective expansion of high or low avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc Natl Acad Sci USA 93:4102–4107

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Vogel TU, Fuller DH et al (2000) Induction of AIDS virus-specific CTL activity in fresh, unstimulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA prime/modified vaccinia virus Ankara boost regimen. J Immunol 164:4968–4978

    PubMed  CAS  Google Scholar 

  • Amara RR, Villinger F, Altman JD et al (2001) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292:69–74

    Article  PubMed  CAS  Google Scholar 

  • Appay V, Nixon DF, Donahoe SM et al (2000) HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75

    Article  PubMed  CAS  Google Scholar 

  • Baba TW, Liska V, Hofmann-Lehmann R et al (2000) Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 6:200–206

    Article  PubMed  CAS  Google Scholar 

  • Bafica A, Scanga CA, Schito M et al (2004) Influence of coinfecting pathogens on HIV expression: evidence for a role of Toll-like receptors. J Immunol 172:7229–7234

    PubMed  CAS  Google Scholar 

  • Barnett SW, Srivastava IK, Kan E et al (2008) Protection of macaques against vaginal SHIV challenge by systemic or mucosal and systemic vaccinations with HIV-envelope. AIDS 22:339–348

    Article  PubMed  CAS  Google Scholar 

  • Barouch DH, Santra S, Schmitz JE et al (2000) Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290:486–492

    Article  PubMed  CAS  Google Scholar 

  • Beagley KW, Elson CO (1992) Cells and cytokines in mucosal immunity and inflammation. Gastroenterol Clin North Am 21:347–366

    PubMed  CAS  Google Scholar 

  • Belshe RB, Gorse GJ, Mulligan MJ, Evans TG, Keefer MC, Excler JL, Duliege AM, Tartaglia J, Cox WI, McNamara J, Hwang KL, Bradney A, Montefiori D, Weinhold KJ (1998) Induction of immune responses to HIV-1 by canarypox virus (ALVAC) HIV-1 and gp120 SF-2 recombinant vaccines in uninfected volunteers. NIAID AIDS Vaccine Evaluation Group. Aids 12:2407–2415

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Ahlers JD (2008) Functional CD8(+) CTLs in mucosal sites and HIV infection: moving forward toward a mucosal AIDS vaccine. Trends Immunol 29:574–585

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Ahlers JD (2009b) What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J Immunol 183:6883–6892

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Ahlers JD (2009a) Comment on “trafficking of antigen-specific CD8+ T lymphocytes to mucosal surfaces following intramuscular vaccination”. J Immunol 182:1779–1780

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Ahlers JD, Berzofsky JA (2004a) Mucosal AIDS vaccines: current status and future directions. Expert Rev Vaccines 3: Suppl 65–73

    Article  Google Scholar 

  • Belyakov IM, Berzofsky JA (2004b) Immunobiology of mucosal HIV infection and the basis for development of a new generation of mucosal AIDS vaccines. Immunity 20:247–253

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Clements JD, Ahlers JD, Strober W, Berzofsky JA (1999a) Approaches to improve engineered HIV vaccine which induce mucosal immunity. J Human Virol 2:217–210

    Google Scholar 

  • Belyakov IM, Ahlers JD, Brandwein BY et al (1998a) The importance of local mucosal HIV-specific CD8+ cytotoxic T lymphocytes for resistance to mucosal-viral transmission in mice and enhancement of resistance by local administration of IL-12. J Clin Invest 102:2072–2081

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Derby MA, Ahlers JD et al (1998b) Mucosal immunization with HIV-1 peptide vaccine induces mucosal and systemic cytotoxic T lymphocytes and protective immunity in mice against intrarectal recombinant HIV-vaccinia challenge. Proc Natl Acad Sci USA 95:1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Kelsall B, Strober W et al (1998c) Use of rIL-12 for enhancing the mucosal cytotoxic T lymphocyte response to a peptide HIV vaccine. J Invest Med 46:216A

    Google Scholar 

  • Belyakov IM, Klinman D, Kuznetsov VA, Moniuszko M, Ahlers JD, Kelsall B, Strober W, Franchini G, Berzofsky JA (2004c) Progress on new mucosal vaccine stategies for HIV. FASEB Journal 18:A821–A821

    Google Scholar 

  • Belyakov IM, Wyatt LS, Ahlers JD et al (1998d) Induction of mucosal CTL response by intrarectal immunization with a replication-deficient recombinant vaccinia virus expressing HIV 89.6 envelope protein. J Virol 72:8264–8272

    PubMed  CAS  Google Scholar 

  • Belyakov IM, Moss B, Strober W et al (1999) Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity. Proc Natl Acad Sci USA 96:4512–4517

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Ahlers JD, Clements JD et al (2000) Interplay of cytokines and adjuvants in the regulation of mucosal and systemic HIV-specific cytotoxic T lymphocytes. J Immunol 165:6454–6462

    PubMed  CAS  Google Scholar 

  • Belyakov IM, Hel Z, Kelsall B et al (2001a) Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques. Nat Med 7:1320–1326

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Wang J, Koka R et al (2001b) Activating CTL precursors to reveal CTL function without skewing the repertoire by in vitro expansion. Eur J Immunol 31:3557–3566

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Hammond SA, Ahlers JD et al (2004) Transcutaneous immunization induces mucosal CTL and protective immunity by migration of primed skin dendritic cells. J Clin Invest 113:998–1007

    PubMed  CAS  Google Scholar 

  • Belyakov IM, Isakov D, Zhu Q et al (2006a) Enhancement of CD8+ T cell immunity in the lung by CpG ODN increases protective efficacy of a Modified Vaccinia Ankara vaccine against lethal poxvirus infection even in CD4-deficient host. J Immunol 177:6336–6343

    PubMed  CAS  Google Scholar 

  • Belyakov IM, Kuznetsov VA, Kelsall B et al (2006b) Impact of vaccine-induced mucosal high avidity CD8+ CTLs in delay of AIDS-viral dissemination from mucosa. Blood 107:3258–3264

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Isakov D, Zhu Q et al (2007a) A novel functional CTL avidity/activity compartmentalization to the site of mucosal immunization contributes to protection of macaques against simian/human immunodeficiency viral depletion of mucosal CD4+ T cells. J Immunol 178:7211–7221

    PubMed  CAS  Google Scholar 

  • Belyakov IM, Kozlowski S, Mage M et al (2007b) Role of {alpha}3 domain of class I MHC molecules in the activation of high- and low-avidity CD8+ CTLs. Int Immunol 19:1413–1420

    Article  PubMed  CAS  Google Scholar 

  • Belyakov IM, Ahlers JD, Nabel GJ et al (2008) Generation of functionally active HIV-1 specific CD8(+) CTL in intestinal mucosa following mucosal, systemic or mixed prime-boost immunization. Virology 381:106–115

    Article  PubMed  CAS  Google Scholar 

  • Bennett MS, Ng HL, Dagarag M et al (2007) Epitope-dependent avidity thresholds for cytotoxic T-lymphocyte clearance of virus-infected cells. J Virol 81:4973–4980

    Article  PubMed  CAS  Google Scholar 

  • Berzofsky JA, Ahlers JD, Belyakov IM (2001) Strategies for designing and optimizing new generation vaccines. Nature Reviews Immunology 1:209–219

    Article  PubMed  CAS  Google Scholar 

  • Berzofsky JA, Ahlers JD, Derby MA, Pendleton CD, Arichi T, Belyakov IM (1999) Approaches to improve engineered vaccines for human immunodeficiency virus (HIV) and other viruses that cause chronic infections. Immunol Rev 170:151–172

    Article  PubMed  CAS  Google Scholar 

  • Berzofsky JA, Ahlers J, Janik J et al (2004) Progress on new vaccine strategies against chronic viral infections. J Clin Invest 114:450–462

    PubMed  CAS  Google Scholar 

  • Biragyn A, Belyakov IM, Chow YH et al (2002) DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood 100:1153–1159

    Article  PubMed  CAS  Google Scholar 

  • Braun MC, He J, Wu C-Y, Kelsall BL (1999) Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor B1 and B2 chain expression. J Exp Med 189:541–552

    Article  PubMed  CAS  Google Scholar 

  • Brenchley JM, Schacker TW, Ruff LE et al (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200:749–759

    Article  PubMed  CAS  Google Scholar 

  • Bruhl P, Kerschbaum A, Eibl MM et al (1998) An experimental prime-boost regimen leading to HIV type 1-specific mucosal and systemic immunity in BALB/c mice. AIDS Res Hum Retroviruses 14:401–407

    Article  PubMed  CAS  Google Scholar 

  • Caputo A, Brocca-Cofano E, Castaldello A et al (2008) Characterization of immune responses elicited in mice by intranasal co-immunization with HIV-1 Tat, gp140 DeltaV2Env and/or SIV Gag proteins and the nontoxicogenic heat-labile Escherichia coli enterotoxin. Vaccine 26:1214–1227

    Article  PubMed  CAS  Google Scholar 

  • Castro BA, Homsy J, Lennette E et al (1992) HIV-1 expression in chimpanzees can be activated by CD8+ cell depletion or CMV infection. Clin Immunol Immunopathol 65:227–233

    Article  PubMed  CAS  Google Scholar 

  • Clayton F, Kapetanovic S, Kotler DP (2001) Enteric microtubule depolymerization in HIV infection: a possible cause of HIV-associated enteropathy. AIDS 15:123–124

    Article  PubMed  CAS  Google Scholar 

  • Dale CJ, Thomson S, De Rose R et al (2006) Prime-boost strategies in DNA vaccines. Methods Mol Med 127:171–197

    PubMed  CAS  Google Scholar 

  • Denning TL, Wang YC, Patel SR et al (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Dickinson BL, Clements JD (1995) Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect Immun 63:1617–1623

    PubMed  CAS  Google Scholar 

  • Dickinson BL, Clements JD (1996) Use of Escherichia coli heat-liable enterotoxin as an oral adjuvant. In: Mucosal Vaccines. Academic Press, New York, pp 73–87

    Google Scholar 

  • Dzutsev AH, Belyakov IM, Isakov DV et al (2007) Avidity of CD8 T cells sharpens immunodominance. Int Immunol 19:497–507

    Article  PubMed  CAS  Google Scholar 

  • Egan MA, Chong SY, Rose NF et al (2004) Immunogenicity of attenuated vesicular stomatitis virus vectors expressing HIV type 1 Env and SIV Gag proteins: comparison of intranasal and intramuscular vaccination routes. AIDS Res Hum Retroviruses 20:989–1004

    Article  PubMed  CAS  Google Scholar 

  • Eichelberger M, Allan W, Zijlstra M et al (1991) Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J Exp Med 174:875–880

    Article  PubMed  CAS  Google Scholar 

  • Elson CO (1996) Cholera toxin as a mucosal adjuvant. In: Kiyono H, McGhee JR, Ogra PL (eds) Mucosal Vaccines. Academic Press, San Diego, pp 59–72

    Google Scholar 

  • Enioutina EY, Visic D, Daynes RA (2000) The induction of systemic and mucosal immune responses to antigen-adjuvant compositions administered into the skin: alterations in the migratory properties of dendritic cells appears to be important for stimulating mucosal immunity. Vaccine 18:2753–2767

    Article  PubMed  CAS  Google Scholar 

  • Eo SK, Gierynska M, Kamar AA et al (2001) Prime-boost immunization with DNA vaccine: mucosal route of administration changes the rules. J Immunol 166:5473–5479

    PubMed  CAS  Google Scholar 

  • Estcourt MJ, Ramsay AJ, Brooks A et al (2002) Prime-boost immunization generates a high frequency, high-avidity CD8(+) cytotoxic T lymphocyte population. Int Immunol 14:31–37

    Article  PubMed  CAS  Google Scholar 

  • Evans DT, Chen LM, Gillis J et al (2003) Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system. J Virol 77:2400–2409

    Article  PubMed  CAS  Google Scholar 

  • Funkhouser A, Clements ML, Slome S et al (1993) Antibodies to recombinant gp160 in mucosal secretions and sera of persons infected with HIV-1 and seronegative vaccine recipients. AIDS Res Hum Retroviruses 9:627–632

    Article  PubMed  CAS  Google Scholar 

  • Gallichan WS, Rosenthal KL (1996) Long-lived cytotoxic T lymphocyte memory in mucosal tissues after mucosal but not systemic immunization. J Exp Med 184:1879–1890

    Article  PubMed  CAS  Google Scholar 

  • Gallimore A, Dumrese T, Hengartner H et al (1998) Protective immunity does not correlate with the hierarchy of virus-specific cytotoxic T cell responses to naturally processed peptides. J Exp Med 187:1647–1657

    Article  PubMed  CAS  Google Scholar 

  • Gao X-M, Zheng B, Liew FY et al (1991) Priming of influenza virus-specific cytotoxic T lymphocytes vivo by short synthetic peptides. J Immunol 147:3268–3273

    PubMed  CAS  Google Scholar 

  • Gherardi MM, Najera JL, Perez-Jimenez E et al (2003) Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes. J Virol 77:7048–7057

    Article  PubMed  CAS  Google Scholar 

  • Gherardi MM, Perez-Jimenez E, Najera JL et al (2004) Induction of HIV immunity in the genital tract after intranasal delivery of a MVA vector: enhanced immunogenicity after DNA prime-modified vaccinia virus Ankara boost immunization schedule. J Immunol 172:6209–6220

    PubMed  CAS  Google Scholar 

  • Glenn GM, Scharton-Kersten T, Vassell R et al (1998) Transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge. J Immunol 161:3211–3214

    PubMed  CAS  Google Scholar 

  • Glenn GM, Taylor DN, Li X et al (2000) Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 6:1403–1406

    Article  PubMed  CAS  Google Scholar 

  • Gockel CM, Bao S, Beagley KW (2000) Transcutaneous immunization induces mucosal and systemic immunity: a potent method for targeting immunity to the female reproductive tract. Mol Immunol 37:537–544

    Article  PubMed  CAS  Google Scholar 

  • Hanke T, Blanchard TJ, Schneider J et al (1998) Enhancement of MHC class I-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime. Vaccine 16:439–445

    Article  PubMed  CAS  Google Scholar 

  • Heise C, Miller CJ, Lackner A et al (1994) Primary acute simian immunodeficiency virus infection of intestinal lymphoid tissue is associated with gastrointestinal dysfunction. J Infect Dis 169:1116–1120

    Article  PubMed  CAS  Google Scholar 

  • Heit A, Gebhardt F, Lahl K et al (2008) Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity. Eur J Immunol 38:1585–1597

    Article  PubMed  CAS  Google Scholar 

  • Hel Z, Nacsa J, Kelsall BL et al (2001) Impairment of Gag-specific D8+ T-cell function in mucosal and sytemic compartments of SIVmac251- and SHIVKU2-infected macaques. J Virol 75:11483–11495

    Article  PubMed  CAS  Google Scholar 

  • Hel Z, Nacsa J, Tryniszewska E et al (2002) Containment of simian immunodeficiency virus infection in vaccinated macaques: correlation with the magnitude of virus-specific pre- and postchallenge CD4+ and CD8+ T cell responses. J Immunol 169:4778–4787

    PubMed  Google Scholar 

  • Horner AA, Datta SK, Takabayashi K et al (2001) Immunostimulatory DNA-based vaccines elicit multifaceted immune responses against HIV at systemic and mucosal sites. J Immunol 167:1584–1591

    PubMed  CAS  Google Scholar 

  • Huang X, Xu J, Qiu C et al (2007) Mucosal priming with PEI/DNA complex and systemic boosting with recombinant TianTan vaccinia stimulate vigorous mucosal and systemic immune responses. Vaccine 25:2620–2629

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Bauer DE, Tuttleton SE et al (1999) Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 189:991–998

    Article  PubMed  CAS  Google Scholar 

  • Kaneko H, Bednarek I, Wierzbicki A et al (2000) Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology 267:8–16

    Article  PubMed  CAS  Google Scholar 

  • Kaufman DR, Liu J, Carville A et al (2008) Trafficking of antigen-specific CD8+ T lymphocytes to mucosal surfaces following intramuscular vaccination. J Immunol 181:4188–4198

    PubMed  CAS  Google Scholar 

  • Kotler DP, Gaetz HP, Lange M et al (1984) Enteropathy associated with the acquired immunodeficiency syndrome. Ann Intern Med 101:421–428

    PubMed  CAS  Google Scholar 

  • Kozlowski PA, Neutra MR (2003) The role of mucosal immunity in prevention of HIV transmission. Curr Mol Med 3:217–228

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski PA, Cu-Uvin S, Neutra MR, Flanigan TP (1997) Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun 65:1387–1394

    PubMed  CAS  Google Scholar 

  • Kuroda MJ, Schmitz JE, Barouch DH et al (1998) Analysis of Gag-specific cytotoxic T lymphocytes in simian immunodeficiency virus-infected rhesus monkeys by cell staining with a tetrameric major histocompatibility complex class I-peptide complex. J Exp Med 187:1373–1381

    Article  PubMed  CAS  Google Scholar 

  • Lena P, Villinger F, Giavedoni L et al (2002) Co-immunization of rhesus macaques with plasmid vectors expressing IFN-gamma, GM-CSF, and SIV antigens enhances anti-viral humoral immunity but does not affect viremia after challenge with highly pathogenic virus. Vaccine 20(Suppl 4):A69–A79

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Duan L, Estes JD et al (2005) Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434:1148–1152

    PubMed  CAS  Google Scholar 

  • Li Z, Zhang M, Zhou C et al (2008) Novel vaccination protocol with two live mucosal vectors elicits strong cell-mediated immunity in the vagina and protects against vaginal virus challenge. J Immunol 180:2504–2513

    PubMed  CAS  Google Scholar 

  • Lin SW, Cun AS, Harris-McCoy K et al (2007) Intramuscular rather than oral administration of replication-defective adenoviral vaccine vector induces specific CD8+ T cell responses in the gut. Vaccine 25:2187–2193

    Article  PubMed  CAS  Google Scholar 

  • Lukacher AE, Braciale VL, Braciale TJ (1984) In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J Exp Med 160:814–826

    Article  PubMed  CAS  Google Scholar 

  • Manrique M, Kozlowski PA, Wang SW et al (2009) Nasal DNA-MVA SIV vaccination provides more significant protection from progression to AIDS than a similar intramuscular vaccination. Mucosal Immunol 2:536–550

    Article  PubMed  CAS  Google Scholar 

  • Marinaro M, Staats HF, Hiroi T, Jackson RJ, Coste M, Boyaka PN, Okahashi N, Yamamoto M, Kiyono H, Bluethmann H, Fujihashi K, McGhee JR (1995) Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4. J.Immunol. 155:4621–4629

    PubMed  CAS  Google Scholar 

  • Marx PA, Compans RW, Gettie A et al (1993) Protection against vaginal SIV transmission with microencapsulated vaccine. Science 260:1323–1327

    Article  PubMed  CAS  Google Scholar 

  • Mascola JR, Stiegler G, VanCott TC et al (2000) Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 6:207–210

    Article  PubMed  CAS  Google Scholar 

  • Masopust D, Ha SJ, Vezys V et al (2006) Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J Immunol 177:831–839

    PubMed  CAS  Google Scholar 

  • Mazzoli S, Trabattoni D, Lo Caputo S et al (1997) HIV-specific mucosal and cellular immunity in HIV-seronegative partners of HIV-seropositive individuals. Nat Med 3:1250–1257

    Article  PubMed  CAS  Google Scholar 

  • McKay PF, Schmitz JE, Barouch DH et al (2002) Vaccine protection against functional CTL abnormalities in simian human immunodeficiency virus-infected rhesus monkeys. J Immunol 168:332–337

    PubMed  CAS  Google Scholar 

  • McMichael AJ (2006) HIV vaccines. Annu Rev Immunol 24:227–255

    Article  PubMed  CAS  Google Scholar 

  • Mehandru S, Poles MA, Tenner-Racz K et al (2004) Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 200:761–770

    Article  PubMed  CAS  Google Scholar 

  • Mercier GT, Nehete PN, Passeri MF et al (2007) Oral immunization of rhesus macaques with adenoviral HIV vaccines using enteric-coated capsules. Vaccine 25:8687–8701

    Article  PubMed  CAS  Google Scholar 

  • Mestecky J, Jackson S (1994) Reassessment of the impact of mucosal immunity in infection with the human immunodeficiency virus (HIV) and design of relevant vaccines. J Clin Immunol 14:259–272

    Article  PubMed  CAS  Google Scholar 

  • Morris CB, Cheng E, Thanawastien A et al (2000) Effectiveness of intranasal immunization with HIV-gp160 Env CTL epitope peptide (E7) in combination with the mucosal adjuvant LT(R192G). Vaccine 18:1944–1951

    Article  PubMed  CAS  Google Scholar 

  • Morrow G, Vachot L, Vagenas P et al (2007) Current concepts of HIV transmission. Curr HIV/AIDS Rep 4:29–35

    Article  PubMed  Google Scholar 

  • Murphey-Corb M, Wilson LA, Trichel AM et al (1999) Selective induction of protective MHC class I restricted CTL in the intestinal lamina propria of rhesus monkeys by transient SIV infection of the colonic mucosa. J Immunol 162:540–549

    PubMed  CAS  Google Scholar 

  • Neeson P, Boyer J, Kumar S et al (2006) A DNA prime-oral Listeria boost vaccine in rhesus macaques induces a SIV-specific CD8 T cell mucosal response characterized by high levels of alpha4beta7 integrin and an effector memory phenotype. Virology 354:299–315

    Article  PubMed  CAS  Google Scholar 

  • Neutra MR, Kozlowski PA (2006) Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6:148–158

    Article  PubMed  CAS  Google Scholar 

  • O’Connor DH, Allen TM, Vogel TU et al (2002) Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nat Med 8:493–499

    Article  PubMed  CAS  Google Scholar 

  • Oh S, Hodge JW, Ahlers JD et al (2003) Selective induction of high avidity CTL by altering the balance of signals from antigen presenting cells. J Immunol 170:2523–2530

    PubMed  CAS  Google Scholar 

  • O’Neill E, Martinez I, Villinger F et al (2002) Protection by SIV VLP DNA prime/protein boost following mucosal SIV challenge is markedly enhanced by IL-12/GM-CSF co-administration. J Med Primatol 31:217–227

    Article  PubMed  Google Scholar 

  • Pal R, Venzon D, Santra S et al (2006) Systemic immunization with an ALVAC-HIV-1/protein boost vaccine strategy protects rhesus macaques from CD4+ T-cell loss and reduces both systemic and mucosal SHIVKU2 RNA levels. J Virol 80:3732–3742

    Article  PubMed  CAS  Google Scholar 

  • Peacock JW, Nordone SK, Jackson SS et al (2004) Gender differences in human immunodeficiency virus type 1-specific CD8 responses in the reproductive tract and colon following nasal peptide priming and modified vaccinia virus Ankara boosting. J Virol 78:13163–13172

    Article  PubMed  CAS  Google Scholar 

  • Pinczewski J, Zhao J, Malkevitch N et al (2005) Enhanced immunity and protective efficacy against SIVmac251 intrarectal challenge following ad-SIV priming by multiple mucosal routes and gp120 boosting in MPL-SE. Viral Immunol 18:236–243

    Article  PubMed  CAS  Google Scholar 

  • Porgador A, Staats HF, Faiola B et al (1997) Intranasal immunization with CTL epitope peptides from HIV-1 or ovalbumin and the mucosal adjuvant cholera toxin induces peptide-specific CTLs and protection against tumor development in vivo. J Immunol 158:834–841

    PubMed  CAS  Google Scholar 

  • Ranasinghe C, Medveczky JC, Woltring D et al (2006) Evaluation of fowlpox-vaccinia virus prime-boost vaccine strategies for high-level mucosal and systemic immunity against HIV-1. Vaccine 24:5881–5895

    Article  PubMed  CAS  Google Scholar 

  • Ranasinghe C, Turner SJ, McArthur C et al (2007) Mucosal HIV-1 pox virus prime-boost immunization induces high-avidity CD8+ T cells with regime-dependent cytokine/granzyme B profiles. J Immunol 178:2370–2379

    PubMed  CAS  Google Scholar 

  • Scharton-Kersten T, Yu J, Vassell R et al (2000) Transcutaneous immunization with bacterial ADP-ribosylating exotoxins, subunits, and unrelated adjuvants. Infect Immun 68:5306–5313

    Article  PubMed  CAS  Google Scholar 

  • Schmitz JE, Kuroda MJ, Santra S et al (1999) Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283:857–860

    Article  PubMed  CAS  Google Scholar 

  • Sedlik C, Dadaglio G, Saron MF et al (2000) In vivo induction of a high-avidity, high-frequency cytotoxic T-lymphocyte response is associated with antiviral protective immunity. J Virol 74:5769–5775

    Article  PubMed  CAS  Google Scholar 

  • Sharpe S, Hanke T, Tinsley-Bown A et al (2003) Mucosal immunization with PLGA-microencapsulated DNA primes a SIV-specific CTL response revealed by boosting with cognate recombinant modified vaccinia virus Ankara. Virology 313:13–21

    Article  PubMed  CAS  Google Scholar 

  • Sharpstone D, Neild P, Crane R et al (1999) Small intestinal transit, absorption, and permeability in patients with AIDS with and without diarrhoea. Gut 45:70–76

    Article  PubMed  CAS  Google Scholar 

  • Shata MT, Reitz MS Jr, DeVico AL et al (2001) Mucosal and systemic HIV-1 Env-specific CD8(+) T-cells develop after intragastric vaccination with a Salmonella Env DNA vaccine vector. Vaccine 20:623–629

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    PubMed  CAS  Google Scholar 

  • Shiver JW, Fu TM, Chen L et al (2002) Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency virus immunity. Nature 415:331–335

    Article  PubMed  CAS  Google Scholar 

  • Snyder JT, Alexander-Miller MA, Berzofsky JA et al (2003) Molecular mechanisms and biological significance of CTL avidity. Curr HIV Res 1:287–294

    Article  PubMed  CAS  Google Scholar 

  • Spira AI, Marx PA, Patterson BK et al (1996) Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med 183:215–225

    Article  PubMed  CAS  Google Scholar 

  • Staats HF, Ennis FA Jr (1999) IL-1 is an effective adjuvant for mucosal and systemic immune responses when coadministered with protein immunogens. J Immunol 162:6141–6147

    PubMed  CAS  Google Scholar 

  • Staats HF, Bradney CP, Gwinn WM et al (2001) Cytokine requirements for induction of systemic and mucosal CTL after nasal immunization. J Immunol 167:5386–5394

    PubMed  CAS  Google Scholar 

  • Stevceva L, Alvarez X, Lackner AA et al (2002) Both mucosal and systemic routes of immunization with the live, attenuated NYVAC/simian immunodeficiency virus SIV(gpe) recombinant vaccine result in gag-specific CD8(+) T-cell responses in mucosal tissues of macaques. J Virol 76:11659–11676

    Article  PubMed  CAS  Google Scholar 

  • Sui Y, Zhu Q, Gagnon S et al (2010) Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques. Proc Natl Acad Sci USA 107:9843–9848

    Article  PubMed  CAS  Google Scholar 

  • Sutmuller RPM, Van Duivenvoorde LM, Van Elsas A et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative cytotoxic T lymphocyte responses. J Exp Med 194:823–832

    Article  PubMed  CAS  Google Scholar 

  • Suvas S, Kumaraguru U, Pack CD et al (2003) CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 198:889–901

    Article  PubMed  CAS  Google Scholar 

  • Tatsis N, Lin SW, Harris-McCoy K et al (2007) Multiple immunizations with adenovirus and MVA vectors improve CD8+ T cell functionality and mucosal homing. Virology 367:156–167

    Article  PubMed  CAS  Google Scholar 

  • Taylor PM, Askonas BA (1986) Influenza nucleoprotein-specific cytotoxic T-cell clones are protective in vivo. Immunology 58:417–420

    PubMed  CAS  Google Scholar 

  • Trumpfheller C, Caskey M, Nchinda G et al (2008) The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA 105:2574–2579

    Article  PubMed  CAS  Google Scholar 

  • Tscharke DC, Karupiah G, Zhou J et al (2005) Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp Med 201:95–104

    Article  PubMed  CAS  Google Scholar 

  • Uematsu S, Fujimoto K, Jang MH et al (2008) Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 9:769–776

    Article  PubMed  CAS  Google Scholar 

  • Ulmer JB, Donnelly JJ, Parker SE et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749

    Article  PubMed  CAS  Google Scholar 

  • Vajdy M, Gardner J, Neidleman J et al (2001) Human immunodeficiency virus type 1 Gag-specific vaginal immunity and protection after local immunizations with sindbis virus-based replicon particles. J Infect Dis 184:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Veazey RS, DeMaria M, Chalifoux LV et al (1998) Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280:427–431

    Article  PubMed  CAS  Google Scholar 

  • Veazey RS, Marx PA, Lackner AA (2003) Vaginal CD4+ T cells express high levels of CCR5 and are rapidly depleted in simian immunodeficiency virus infection. J Inf Dis 187:769–776

    Article  CAS  Google Scholar 

  • Vogel TU, Reynolds MR, Fuller DH et al (2003) Multispecific vaccine-induced mucosal cytotoxic T lymphocytes reduce acute-phase viral replication but fail in long-term control of simian immunodeficiency virus SIVmac239. J Virol 77:13348–13360

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson J, Cunningham AL (2006) Mucosal transmission of HIV-1: first stop dendritic cells. Curr Drug Targets 7:1563–1569

    Article  PubMed  CAS  Google Scholar 

  • Wyatt LS, Belyakov IM, Earl PL et al (2008) Enhanced cell surface expression, immunogenicity and genetic stability resulting from a spontaneous truncation of HIV Env expressed by a recombinant MVA. Virology 372:260–272

    Article  PubMed  CAS  Google Scholar 

  • Xu-Amano J, Kiyono H, Jackson RJ, Staats HF, Fujihashi K, Burrows PD, Elson CO, Pillai S, McGhee JR (1993) Helper T cell subsets for immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa associated tissues. J Exp Med 178:1309–1320

    Article  PubMed  CAS  Google Scholar 

  • Yee C, Savage PA, Lee PP et al (1999) Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J Immunol 162:2227–2234

    PubMed  CAS  Google Scholar 

  • Yoshizawa I, Mizuochi T, Ogata A et al (2003) Studies on the generation and maintenance of mucosal cytotoxic T lymphocytes against human immunodeficiency virus type 1 Gag in mice. AIDS Res Hum Retroviruses 19:469–479

    Article  PubMed  CAS  Google Scholar 

  • Zeh HJ 3rd, Perry-Lalley D, Dudley ME et al (1999) High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 162:989–994

    PubMed  CAS  Google Scholar 

  • Zhang Z-Q, Schuler T, Zupancic M et al (1999) Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286:1353–1357

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Hidajat R, Peng B et al (2007) Comparative evaluation of oral and intranasal priming with replication-competent adenovirus 5 host range mutant (Ad5hr)-simian immunodeficiency virus (SIV) recombinant vaccines on immunogenicity and protective efficacy against SIV(mac251). Vaccine 25:8021–8035

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Egelston C, Vivekanandhan A et al (2008) Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc Natl Acad Sci USA 105:16260–16265

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Egelston C, Gagnon S et al (2010) Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J Clin Invest 120:607–616

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor M. Belyakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belyakov, I.M., Ahlers, J.D. (2011). Mucosal Immunity and HIV-1 Infection: Applications for Mucosal AIDS Vaccine Development. In: Kozlowski, P. (eds) Mucosal Vaccines. Current Topics in Microbiology and Immunology, vol 354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_119

Download citation

Publish with us

Policies and ethics