Skip to main content

Impact of Stress on Prefrontal Glutamatergic, Monoaminergic and Cannabinoid Systems

  • Chapter
  • First Online:
Behavioral Neurobiology of Stress-related Disorders

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 18))

Abstract

Stress has been shown to have marked and divergent effects on learning and memory which involves specific brain regions, such as spatial and declarative memory involving the hippocampus, memory of emotional arousing experiences and fear involving the amygdala, and executive functions and fear extinction involving the prefrontal cortex or the PFC. Response to stress involves a coordinated activation of a constellation of physiological systems including the activation of the hypothalamic-pituitary-adrenal (HPA) axis and other modulatory neurotransmitters and signaling systems. This paper presents a concise review of the effects of stress and glucocorticoids on the glutamatergic and monoaminergic (including noradrenergic, dopaminergic, and serotonergic systems) neurotransmitter systems as well as endocannabinoid signaling. Because of the breadth of the scope of this topic, the review is limited to the effects of stress on these brain systems on the prefrontal cortex, and where relevant, the hippocampus and the amygdala.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andolina D, Maran D, Valzania A, Conversi D, Puglisi-Allegra S (2013) Prefrontal/amygdalar system determines stress coping behavior through 5-HT/GABA connection. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 38(10):2057–2067

    CAS  Google Scholar 

  • Asan E, Steinke M, Lesch KP (2013) Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 139(6):785–813

    CAS  PubMed  Google Scholar 

  • Aso E, Ozaita A, Valdizan EM, Ledent C, Pazos A, Maldonado R, Valverde O (2008) BDNF impairment in the hippocampus is related to enhanced despair behavior in CB1 knockout mice. J Neurochem 105(2):565–572

    CAS  PubMed  Google Scholar 

  • Atwood BK, Mackie K (2010) CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol 160(3):467–479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barik J, Marti F, Morel C, Fernandez SP, Lanteri C, Godeheu G, Tassin JP, Mombereau C, Faure P, Tronche F (2013) Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons. Science (New York, N.Y.) 339(6117):332–335

    CAS  Google Scholar 

  • Barna I, Zelena D, Arszovszki AC, Ledent C (2004) The role of endogenous cannabinoids in the hypothalamo-pituitary-adrenal axis regulation: in vivo and in vitro studies in CB1 receptor knockout mice. Life Sci 75(24):2959–2970

    CAS  PubMed  Google Scholar 

  • Baumeister D, Lightman SL, Pariante CM (2014) The interface of stress and the HPA axis in behavioural phenotypes of mental illness. In: Current topics in behavioral neurosciences. doi:10.1007/7854_2014_304

  • Bellocchio L, Cervino C, Pasquali R, Pagotto U (2008) The endocannabinoid system and energy metabolism. J Neuroendocrinol 20(6):850–857

    CAS  PubMed  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42(1):33–84

    PubMed  Google Scholar 

  • Beyer CE, Cremers TI (2008) Do selective serotonin reuptake inhibitors acutely increase frontal cortex levels of serotonin? Eur J Pharmacol 580(3):350–354

    CAS  PubMed  Google Scholar 

  • Beylin AV, Shors TJ (2003) Glucocorticoids are necessary for enhancing the acquisition of associative memories after acute stressful experience. Horm Behav 43(1):124–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bubar MJ, Cunningham KA (2006) Serotonin 5-HT2A and 5-HT2C receptors as potential targets for modulation of psychostimulant use and dependence. Curr Top Med Chem 6(18):1971–1985

    CAS  PubMed  Google Scholar 

  • Burghardt PR, Love TM, Stohler CS, Hodgkinson C, Shen PH, Enoch MA, Goldman D, Zubieta JK (2012) Leptin regulates dopamine responses to sustained stress in humans. J Neurosci: Off J Soc Neurosci 32(44):15369–15376

    CAS  Google Scholar 

  • Burke AR, Forster GL, Novick AM, Roberts CL, Watt MJ (2013) Effects of adolescent social defeat on adult amphetamine-induced locomotion and corticoaccumbal dopamine release in male rats. Neuropharmacology 67:359–369

    CAS  PubMed  Google Scholar 

  • Burke AR, Renner KJ, Forster GL, Watt MJ (2010) Adolescent social defeat alters neural, endocrine and behavioral responses to amphetamine in adult male rats. Brain Res 1352:147–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burke AR, Watt MJ, Forster GL (2011) Adolescent social defeat increases adult amphetamine conditioned place preference and alters D2 dopamine receptor expression. Neuroscience 197:269–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butts KA, Weinberg J, Young AH, Phillips AG (2011) Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proc Natl Acad Sci U S A 108(45):18459–18464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlson G, Wang Y, Alger BE (2002) Endocannabinoids facilitate the induction of LTP in the hippocampus. Nat Neurosci 5(8):723–724

    CAS  PubMed  Google Scholar 

  • Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N (2007) The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci: Off J Soc Neurosci 27(11):2781–2787

    CAS  Google Scholar 

  • Chang MS, Sved AF, Zigmond MJ, Austin MC (2000) Increased transcription of the tyrosine hydroxylase gene in individual locus coeruleus neurons following footshock stress. Neuroscience 101(1):131–139

    CAS  PubMed  Google Scholar 

  • Corchero J, Romero J, Berrendero F, Fernandez-Ruiz J, Ramos JA, Fuentes JA, Manzanares J (1999) Time-dependent differences of repeated administration with Delta9-tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene expression and G-protein activation by mu-opioid and CB1-cannabinoid receptors in the caudate-putamen. Brain Res Mol Brain Res 67(1):148–157

    CAS  PubMed  Google Scholar 

  • Deutsch DG, Ueda N, Yamamoto S (2002) The fatty acid amide hydrolase (FAAH). Prostaglandins Leukot Essent Fatty Acids 66(2–3):201–210

    CAS  PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science (New York, N.Y.) 258(5090):1946–1949

    CAS  Google Scholar 

  • Diamond DM, Campbell AM, Park CR, Halonen J, Zoladz PR (2007) The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast 2007:60803

    PubMed Central  PubMed  Google Scholar 

  • Dinh TP, Freund TF, Piomelli D (2002) A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids 121(1–2):149–158

    CAS  PubMed  Google Scholar 

  • Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci: Off J Soc Neurosci 13(9):3839–3847

    CAS  Google Scholar 

  • Doppler W (1994) Regulation of gene expression by prolactin. Rev Physiol Biochem Pharmacol 124:93–130

    CAS  PubMed  Google Scholar 

  • Doyon WM, Thomas AM, Ostroumov A, Dong Y, Dani JA (2013) Potential substrates for nicotine and alcohol interactions: a focus on the mesocorticolimbic dopamine system. Biochem Pharmacol 86(8):1181–1193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ebner K, Bosch OJ, Kromer SA, Singewald N, Neumann ID (2005) Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 30(2):223–230

    CAS  Google Scholar 

  • Ebner K, Singewald GM, Whittle N, Ferraguti F, Singewald N (2008) Neurokinin 1 receptor antagonism promotes active stress coping via enhanced septal 5-HT transmission. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 33(8):1929–1941

    CAS  Google Scholar 

  • Erecinska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35(4):245–296

    CAS  PubMed  Google Scholar 

  • Evanson NK, Tasker JG, Hill MN, Hillard CJ, Herman JP (2010) Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology 151(10):4811–4819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furay AR, Bruestle AE, Herman JP (2008) The role of the forebrain glucocorticoid receptor in acute and chronic stress. Endocrinology 149(11):5482–5490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganon-Elazar E, Akirav I (2009) Cannabinoid receptor activation in the basolateral amygdala blocks the effects of stress on the conditioning and extinction of inhibitory avoidance. J Neurosci: Off J Soc Neurosci 29(36):11078–11088

    CAS  Google Scholar 

  • Garrett JE, Wellman CL (2009) Chronic stress effects on dendritic morphology in medial prefrontal cortex: sex differences and estrogen dependence. Neuroscience 162(1):195–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gasser PJ, Lowry CA, Orchinik M (2006) Corticosterone-sensitive monoamine transport in the rat dorsomedial hypothalamus: potential role for organic cation transporter 3 in stress-induced modulation of monoaminergic neurotransmission. J Neurosci: Off J Soc Neurosci 26(34):8758–8766

    CAS  Google Scholar 

  • Gasser PJ, Orchinik M, Raju I, Lowry CA (2009) Distribution of organic cation transporter 3, a corticosterone-sensitive monoamine transporter, in the rat brain. J Comp Neurol 512(4):529–555

    CAS  PubMed  Google Scholar 

  • Gorzalka BB, Hill MN (2011) Putative role of endocannabinoid signaling in the etiology of depression and actions of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1575–1585

    CAS  PubMed  Google Scholar 

  • Gorzalka BB, Hill MN, Hillard CJ (2008) Regulation of endocannabinoid signaling by stress: implications for stress-related affective disorders. Neurosci Biobehav Rev 32(6):1152–1160

    CAS  PubMed  Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30(5):220–227

    CAS  PubMed  Google Scholar 

  • Guptan P, Dhingra A, Panicker MM (1997) Multiple transcripts encode the 5-HT1F receptor in rodent brain. Neuroreport 8(15):3317–3321

    CAS  PubMed  Google Scholar 

  • Hale MW, Shekhar A, Lowry CA (2012) Stress-related serotonergic systems: implications for symptomatology of anxiety and affective disorders. Cell Mol Neurobiol 32(5):695–708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haller J, Varga B, Ledent C, Barna I, Freund TF (2004) Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice. Eur J Neurosci 19(7):1906–1912

    CAS  PubMed  Google Scholar 

  • Harro J, Oreland L, Vasar E, Bradwejn J (1995) Impaired exploratory behaviour after DSP-4 treatment in rats: implications for the increased anxiety after noradrenergic denervation. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol 5(4):447–455

    CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci: Off J Soc Neurosci 11(2):563–583

    CAS  Google Scholar 

  • Herman JP, Mueller NK (2006) Role of the ventral subiculum in stress integration. Behav Brain Res 174(2):215–224

    CAS  PubMed  Google Scholar 

  • Hill MN, Hillard CJ, MCEwen BS (2011) Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor-deficient mice parallel the effects of chronic stress. Cereb cortex (New York, N.Y.: 1991) 21(9):2056–2064

    Google Scholar 

  • Hill MN, Hunter RG, McEwen BS (2009) Chronic stress differentially regulates cannabinoid CB1 receptor binding in distinct hippocampal subfields. Eur J Pharmacol 614(1–3):66–69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hill MN, Patel S, Campolongo P, Tasker JG, Wotjak CT, Bains JS (2010) Functional interactions between stress and the endocannabinoid system: from synaptic signaling to behavioral output. J Neurosci: Off J Soc Neurosci 30(45):14980–14986

    CAS  Google Scholar 

  • Hill MN, Tasker JG (2012) Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience 204:5–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itoi K, Jiang YQ, Iwasaki Y, Watson SJ (2004) Regulatory mechanisms of corticotropin-releasing hormone and vasopressin gene expression in the hypothalamus. J Neuroendocrinol 16(4):348–355

    CAS  PubMed  Google Scholar 

  • Itoi K, Sugimoto N (2010) The brainstem noradrenergic systems in stress, anxiety and depression. J Neuroendocrinol 22(5):355–361

    CAS  PubMed  Google Scholar 

  • Jacobs BL, Fornal CA (1999) Activity of serotonergic neurons in behaving animals. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 21(2 Suppl):9S–15S

    CAS  Google Scholar 

  • Jaferi A, Bhatnagar S (2006) Corticosterone can act at the posterior paraventricular thalamus to inhibit hypothalamic-pituitary-adrenal activity in animals that habituate to repeated stress. Endocrinology 147(10):4917–4930

    CAS  PubMed  Google Scholar 

  • Jaferi A, Nowak N, Bhatnagar S (2003) Negative feedback functions in chronically stressed rats: role of the posterior paraventricular thalamus. Physiol Behav 78(3):365–373

    CAS  PubMed  Google Scholar 

  • Jedema HP, Grace AA (2004) Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro. J Neurosci: Off J Soc Neurosci 24(43):9703–9713

    CAS  Google Scholar 

  • Joels M, Baram TZ (2009) The neuro-symphony of stress. Nat Rev Neurosci 10(6):459–466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karst H, Berger S, Turiault M, Tronche F, Schutz G, Joels M (2005) Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci U S A 102(52):19204–19207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawahara H, Kawahara Y, Westerink BH (2000) The role of afferents to the locus coeruleus in the handling stress-induced increase in the release of noradrenaline in the medial prefrontal cortex: a dual-probe microdialysis study in the rat brain. Eur J Pharmacol 387(3):279–286

    CAS  PubMed  Google Scholar 

  • Kim CH, Lee J, Lee JY, Roche KW (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res 86(1):1–10

    CAS  PubMed  Google Scholar 

  • Klink R, Robichaud M, Debonnel G (2002) Gender and gonadal status modulation of dorsal raphe nucleus serotonergic neurons. Part II. Regulatory mechanisms. Neuropharmacology 43(7):1129–1138

    CAS  Google Scholar 

  • Lang T, Jahn R (2008) Core proteins of the secretory machinery. Handb Exp Pharmacol 184:107–127

    Google Scholar 

  • Lapiz MD, Mateo Y, Durkin S, Parker T, Marsden CA (2001) Effects of central noradrenaline depletion by the selective neurotoxin DSP-4 on the behaviour of the isolated rat in the elevated plus maze and water maze. Psychopharmacology 155(3):251–259

    CAS  PubMed  Google Scholar 

  • Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen BS (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci: Off J Soc Neurosci 26(30):7870–7874

    CAS  Google Scholar 

  • Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR, Gasser PJ, Shekhar A (2008) Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94

    PubMed  Google Scholar 

  • Lowther S, de Paermentier F, Crompton MR, Horton RW (1992) The distribution of 5-HT1D and 5-HT1E binding sites in human brain. Eur J Pharmacol 222(1):137–142

    CAS  PubMed  Google Scholar 

  • Lupien SJ (2009) Brains under stress. Can J Psychiatry Revue Can Psychiatr 54(1):4–5

    Google Scholar 

  • Makino S, Smith MA, Gold PW (2002) Regulatory role of glucocorticoids and glucocorticoid receptor mRNA levels on tyrosine hydroxylase gene expression in the locus coeruleus during repeated immobilization stress. Brain Res 943(2):216–223

    CAS  PubMed  Google Scholar 

  • Marazziti D, Baroni S, Borsini F, Picchetti M, Vatteroni E, Falaschi V, Catena-Dell’Osso M (2013) Serotonin receptors of type 6 (5-HT6): from neuroscience to clinical pharmacology. Curr Med Chem 20(3):371–377

    CAS  PubMed  Google Scholar 

  • Marchetti E, Dumuis A, Bockaert J, Soumireu-Mourat B, Roman FS (2000) Differential modulation of the 5-HT(4) receptor agonists and antagonist on rat learning and memory. Neuropharmacology 39(11):2017–2027

    CAS  PubMed  Google Scholar 

  • Marquez C, Poirier GL, Cordero MI, Larsen MH, Groner A, Marquis J, Magistretti PJ, Trono D, Sandi C (2013) Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Transl Psychiatry 3:e216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mason ST, Fibiger HC (1979) Current concepts. I. Anxiety: the locus coeruleus disconnection. Life Sci 25(26):2141–2147

    CAS  PubMed  Google Scholar 

  • Matsuda LA, Bonner TI, Lolait SJ (1992) Cannabinoid receptors: which cells, where, how, and why? NIDA Res Monogr 126:48–56

    CAS  PubMed  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564

    CAS  PubMed  Google Scholar 

  • McEwen B (1999) Development of the cerebral cortex: XIII. Stress and brain development: II. J Am Acad Child Adolesc Psychiatry 38(1):101–103

    CAS  PubMed  Google Scholar 

  • McEwen BS, Gianaros PJ (2011) Stress- and allostasis-induced brain plasticity. Annu Rev Med 62:431–445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miederer I, Maus S, Zwiener I, Podoprygorina G, Meshcheryakov D, Lutz B, Schreckenberger M (2013) Evaluation of cannabinoid type 1 receptor expression in the rat brain using [(1)(8)F]MK-9470 microPET. Eur J Nucl Med Mol Imag 40(11):1739–1747

    CAS  Google Scholar 

  • Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420(6911):70–74

    CAS  PubMed  Google Scholar 

  • Milad MR, Rauch SL, Pitman RK, Quirk GJ (2006) Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 73(1):61–71

    PubMed  Google Scholar 

  • Morsink MC, Joels M, Sarabdjitsingh RA, Meijer OC, de Kloet ER, Datson NA (2006) The dynamic pattern of glucocorticoid receptor-mediated transcriptional responses in neuronal PC12 cells. J Neurochem 99(4):1282–1298

    CAS  PubMed  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65

    CAS  PubMed  Google Scholar 

  • Nagano-Saito A, Dagher A, Booij L, Gravel P, Welfeld K, Casey KF, Leyton M, Benkelfat C (2013) Stress-induced dopamine release in human medial prefrontal cortex–18F-fallypride/PET study in healthy volunteers. Synapse (New York, N.Y.) 67(12):821–830

    Google Scholar 

  • Niciu MJ, Ionescu DF, Richards EM, Zarate CA Jr (2013) Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder. J Neural Transm. doi:10.1007/s00702-013-1130-x

  • Oliver KR, Kinsey AM, Wainwright A, Sirinathsinghji DJ (2000) Localization of 5-ht(5A) receptor-like immunoreactivity in the rat brain. Brain Res 867(1–2):131–142

    CAS  PubMed  Google Scholar 

  • O’Shea RD (2002) Roles and regulation of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 29(11):1018–1023

    PubMed  Google Scholar 

  • Ossewaarde L, Qin S, van Marle HJ, van Wingen GA, Fernandez G, Hermans EJ (2011) Stress-induced reduction in reward-related prefrontal cortex function. NeuroImage 55(1):345–352

    PubMed  Google Scholar 

  • Pacak K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22(4):502–548

    CAS  PubMed  Google Scholar 

  • Pascucci T, Andolina D, Mela IL, Conversi D, Latagliata C, Ventura R, Puglisi-Allegra S, Cabib S (2009) 5-Hydroxytryptophan rescues serotonin response to stress in prefrontal cortex of hyperphenylalaninaemic mice. Int J Neuropsychopharmacol/official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP) 12(8):1067–1079

    CAS  Google Scholar 

  • Pasqualetti M, Ori M, Castagna M, Marazziti D, Cassano GB, Nardi I (1999) Distribution and cellular localization of the serotonin type 2C receptor messenger RNA in human brain. Neuroscience 92(2):601–611

    CAS  PubMed  Google Scholar 

  • Passerin AM, Cano G, Rabin BS, Delano BA, Napier JL, Sved AF (2000) Role of locus coeruleus in foot shock-evoked Fos expression in rat brain. Neuroscience 101(4):1071–1082

    CAS  PubMed  Google Scholar 

  • Patel KD, Davison JS, Pittman QJ, Sharkey KA (2010) Cannabinoid CB(2) receptors in health and disease. Curr Med Chem 17(14):1393–1410

    PubMed  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987a) Serotonin receptors in the human brain—III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21(1):97–122

    CAS  PubMed  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987b) Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21(1):123–139

    CAS  PubMed  Google Scholar 

  • Pecoraro N, Dallman MF, Warne JP, Ginsberg AB, Laugero KD, la Fleur SE, Houshyar H, Gomez F, Bhargava A, Akana SF (2006) From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol 79(5–6):247–340

    CAS  PubMed  Google Scholar 

  • Pertovaara A (2013) The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol 716(1–3):2–7

    CAS  PubMed  Google Scholar 

  • Pertwee RG (2008) Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict Biol 13(2):147–159

    CAS  PubMed  Google Scholar 

  • Pirnik Z, Mravec B, Kiss A (2004) Fos protein expression in mouse hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei upon osmotic stimulus: colocalization with vasopressin, oxytocin, and tyrosine hydroxylase. Neurochem Int 45(5):597–607

    CAS  PubMed  Google Scholar 

  • Popoli M, Yan Z, McEwen BS, Sanacora G (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13(1):22–37

    PubMed Central  PubMed  Google Scholar 

  • Pruessner JC, Champagne F, Meaney MJ, Dagher A (2004) Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. J Neurosci: Off J Soc Neurosci 24(11):2825–2831

    CAS  Google Scholar 

  • Qin S, Hermans EJ, van Marle HJ, Luo J, Fernandez G (2009) Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol Psychiatry 66(1):25–32

    PubMed  Google Scholar 

  • Rademacher DJ, Meier SE, Shi L, Ho WS, Jarrahian A, Hillard CJ (2008) Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology 54(1):108–116

    CAS  PubMed  Google Scholar 

  • Radley JJ, Sawchenko PE (2011) A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci: Off J Soc Neurosci 31(26):9683–9695

    CAS  Google Scholar 

  • Radley JJ, Williams B, Sawchenko PE (2008) Noradrenergic innervation of the dorsal medial prefrontal cortex modulates hypothalamo-pituitary-adrenal responses to acute emotional stress. J Neurosci: Off J Soc Neurosci 28(22):5806–5816

    CAS  Google Scholar 

  • Rasmussen K, Morilak DA, Jacobs BL (1986a) Single unit activity of locus coeruleus neurons in the freely moving cat. I. During naturalistic behaviors and in response to simple and complex stimuli. Brain Res 371(2):324–334

    CAS  PubMed  Google Scholar 

  • Rasmussen K, Strecker RE, Jacobs BL (1986b) Single unit response of noradrenergic, serotonergic and dopaminergic neurons in freely moving cats to simple sensory stimuli. Brain Res 369(1–2):336–340

    CAS  PubMed  Google Scholar 

  • Redmond DE Jr, Huang YH, Snyder DR, Maas JW (1976) Behavioral effects of stimulation of the nucleus locus coeruleus in the stump-tailed monkey Macaca arctoides. Brain Res 116(3):502–510

    PubMed  Google Scholar 

  • Reznikov LR, Reagan LP, Fadel JR (2009) Effects of acute and repeated restraint stress on GABA efflux in the rat basolateral and central amygdala. Brain Res 1256:61–68

    CAS  PubMed  Google Scholar 

  • Ruffolo RR Jr, Hieble JP (1994) Alpha-adrenoceptors. Pharmacol Ther 61(1–2):1–64

    CAS  PubMed  Google Scholar 

  • Russell GM, Henley DE, Leendertz J, Douthwaite JA, Wood SA, Stevens A, Woltersdorf WW, Peeters BW, Ruigt GS, White A, Veldhuis JD, Lightman SL (2010) Rapid glucocorticoid receptor-mediated inhibition of hypothalamic-pituitary-adrenal ultradian activity in healthy males. J Neurosci: Off J Soc Neurosci 30(17):6106–6115

    CAS  Google Scholar 

  • Sakai K, Crochet S (2001) Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states. Neuroscience 104(4):1141–1155

    CAS  PubMed  Google Scholar 

  • Samuels ER, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 6(3):235–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS, Rainbow TC (1984) Do vasopressin-related peptides induce hippocampal corticosterone receptors? Implications for aging. J Neurosci: Off J Soc Neurosci 4(6):1479–1485

    CAS  Google Scholar 

  • Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3):211–223

    CAS  PubMed  Google Scholar 

  • Schoofs D, Pabst S, Brand M, Wolf OT (2013) Working memory is differentially affected by stress in men and women. Behav Brain Res 241:144–153

    PubMed  Google Scholar 

  • Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30(5):203–210

    CAS  PubMed  Google Scholar 

  • Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32

    Google Scholar 

  • Shors TJ, Weiss C, Thompson RF (1992) Stress-induced facilitation of classical conditioning. Science (New York, N.Y.) 257(5069):537–539

    CAS  Google Scholar 

  • Sinclair D, Purves-Tyson TD, Allen KM, Weickert CS (2014) Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology 231(8):1581–1599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singewald GM, Rjabokon A, Singewald N, Ebner K (2011) The modulatory role of the lateral septum on neuroendocrine and behavioral stress responses. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 36(4):793–804

    Google Scholar 

  • Stasi C, Bellini M, Bassotti G, Blandizzi C, Milani S (2014) Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech Coloproctol 18(17):613–621

    Google Scholar 

  • Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science (New York, N.Y.) 323(5913):474–477

    Google Scholar 

  • Sugiura T, Kishimoto S, Oka S, Gokoh M (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45(5):405–446

    CAS  PubMed  Google Scholar 

  • Sugiura T, Waku K (2000) 2-Arachidonoylglycerol and the cannabinoid receptors. Chem Phys Lipids 108(1–2):89–106

    CAS  PubMed  Google Scholar 

  • Summers RJ, McMartin LR (1993) Adrenoceptors and their second messenger systems. J Neurochem 60(1):10–23

    CAS  PubMed  Google Scholar 

  • Taghzouti K, le Moal M, Simon H (1991) Suppression of noradrenergic innervation compensates for behavioral deficits induced by lesion of dopaminergic terminals in the lateral septum. Brain Res 552(1):124–128

    CAS  PubMed  Google Scholar 

  • Tasker JG, Herman JP (2011) Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic-pituitary-adrenal axis. Stress (Amsterdam, Netherlands) 14(4):398–406

    Google Scholar 

  • Tepper SJ, Rapoport AM, Sheftell FD (2002) Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch Neurol 59(7):1084–1088

    PubMed  Google Scholar 

  • Thomas DR, Hagan JJ (2004) 5-HT7 receptors. Curr Drug Targets CNS Neurol Disord 3(1):81–90

    Google Scholar 

  • Thompson AJ, Lummis SC (2007) The 5-HT3 receptor as a therapeutic target. Expert Opin Ther Targets 11(4):527–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda N, Katayama K, Goparaju SK, Kurahashi Y, Yamanaka K, Suzuki H, Yamamoto S (2002) Catalytic properties of purified recombinant anandamide amidohydrolase. Adv Exp Med Biol 507:251–256

    CAS  PubMed  Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10(6):397–409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uriguen L, Perez-Rial S, Ledent C, Palomo T, Manzanares J (2004) Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 46(7):966–973

    CAS  PubMed  Google Scholar 

  • Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24(1):125–132

    CAS  PubMed  Google Scholar 

  • van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, di Marzo V, Pittman QJ, Patel KD, Sharkey KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science (New York, N.Y.) 310(5746):329–332

    Google Scholar 

  • Varnas K, Halldin C, Hall H (2004) Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22(3):246–260

    PubMed  Google Scholar 

  • Wade MR, Degroot A, Nomikos GG (2006) Cannabinoid CB1 receptor antagonism modulates plasma corticosterone in rodents. Eur J Pharmacol 551(1–3):162–167

    CAS  PubMed  Google Scholar 

  • Wand GS, Oswald LM, McCaul ME, Wong DF, Johnson E, Zhou Y, Kuwabara H, Kumar A (2007) Association of amphetamine-induced striatal dopamine release and cortisol responses to psychological stress. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 32(11):2310–2320

    CAS  Google Scholar 

  • Watt MJ, Burke AR, Renner KJ, Forster GL (2009) Adolescent male rats exposed to social defeat exhibit altered anxiety behavior and limbic monoamines as adults. Behav Neurosci 123(3):564–576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wellman CL, Izquierdo A, Garrett JE, Martin KP, Carroll J, Millstein R, Lesch KP, Murphy DL, Holmes A (2007) Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci: Off J Soc Neurosci 27(3):684–691

    CAS  Google Scholar 

  • Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science (New York, N.Y.) 296(5568):678–682

    CAS  Google Scholar 

  • Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH, Li J, Gardner EL (2011) Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. Nat Neurosci 14(9):1160–1166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, Yan Z (2009) Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc Natl Acad Sci U S A 106(33):14075–14079

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ziegler DR, Cass WA, Herman JP (1999) Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. J Neuroendocrinol 11(5):361–369

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Lapiz-Bluhm receives funding from the Robert Wood Johnson Nurse Faculty Program. She sincerely thanks Dr. Carrie Jo Braden, Dr. James Michael Bluhm and Dr. Charles Marsden for taking the time to read the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Danet Lapiz-Bluhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lapiz-Bluhm, M.D. (2014). Impact of Stress on Prefrontal Glutamatergic, Monoaminergic and Cannabinoid Systems. In: Pariante, C., Lapiz-Bluhm, M. (eds) Behavioral Neurobiology of Stress-related Disorders. Current Topics in Behavioral Neurosciences, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_331

Download citation

Publish with us

Policies and ethics