Skip to main content

Genetic Analysis of Magnetosome Biomineralization

  • Chapter
  • First Online:
Book cover Magnetoreception and Magnetosomes in Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 3))

Abstract

Magnetite crystals produced by magnetotactic bacteria (MTB) have uniform species–specific morphologies and sizes, which are mostly unknown from inorganic systems. This indicates that biomineralization in magnetosomes is a process with genetic control over the accumulation of iron, the deposition of the magnetic crystal within a specific compartment, as well as their intracellular assembly and alignment into chain-like structures. Our understanding of the molecular and genetic basis of magnetosome formation has substantially improved during the last few years due to the progress in genome analysis and the development of advanced genetic techniques to study MTB.

In this review, we describe the methods and systems, which have become available for genetic analysis of MTB. In addition, we summarize the current knowledge of genes and proteins controlling magnetosome formation, and give an overview over genomic analysis of MTB with emphasis on the structure and organization of genomic “magnetosome islands” identified in several strains of MTB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandre G, Greer-Phillips S, Zhulin IB (2004) Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev 28:113–126

    Article  PubMed  CAS  Google Scholar 

  2. Amann R, Rossello-Mora R, Flies C, Schüler D (2004) Phylogeny and in situ identification of magnetotactic bacteria. Wiley, Weinheim

    Google Scholar 

  3. Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750

    Article  PubMed  CAS  Google Scholar 

  4. Bazylinski DA (1999) Synthesis of the bacterial magnetosome: the making of a magnetic personality. Int Microbiol 2:71–80

    PubMed  CAS  Google Scholar 

  5. Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL, Dubbels BL (2004) Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol 182:373–387

    Article  PubMed  CAS  Google Scholar 

  6. Berson AE, Hudson DV, Waleh NS (1989) Cloning and characterization of the recA gene of Aquaspirillum magnetotacticum. Arch Microbiol 152:567–571

    Article  PubMed  CAS  Google Scholar 

  7. Berson AE, Hudson DV, Waleh NS (1991) Cloning of a sequence of Aquaspirillum magnetotacticum that complements the aroD gene of Escherichia coli. Mol Microbiol 5:2261–2264

    Article  PubMed  CAS  Google Scholar 

  8. Bertani LE, Weko J, Phillips KV, Gray RF, Kirschvink JL (2001) Physical and genetic characterization of the genome of Magnetospirillum magnetotacticum, strain MS-1. Gene 264:257–263

    Article  PubMed  CAS  Google Scholar 

  9. Blakemore R (1975) Magnetotactic bacteria. Science 190:377–379

    Article  PubMed  CAS  Google Scholar 

  10. Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. Bioessays 21:932–939

    Article  PubMed  CAS  Google Scholar 

  11. Bochicchio B, Pepe A, Tamburro AM (2001) On (GGLGY) synthetic repeating sequences of lamprin and analogous sequences. Matrix Biol 20:243–250

    Article  PubMed  CAS  Google Scholar 

  12. Bzymek M, Lovett ST (2001) Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci USA 98:8319–8325

    Article  PubMed  CAS  Google Scholar 

  13. Calugay RJ, Miyashita H, Okamura Y, Matsunaga T (2003) Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol Lett 218:371–375

    Article  PubMed  CAS  Google Scholar 

  14. Calugay RJ, Okamura Y, Wahyudi AT, Takeyama H, Matsunaga T (2004) Siderophore production of a periplasmic transport binding protein kinase gene defective mutant of Magnetospirillum magneticum AMB-1. Biochem Biophys Res Commun 323:852–857

    Article  PubMed  CAS  Google Scholar 

  15. Carballido-Lopez R, Errington J (2003) A dynamic bacterial cytoskeleton. Trends Cell Biol 13:577–583

    Article  PubMed  CAS  Google Scholar 

  16. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, Schweizer HP (2005) A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2:443–448

    Article  PubMed  CAS  Google Scholar 

  17. Clausen T, Southan C, Ehrmann M (2002) The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 10:443–455

    Article  PubMed  CAS  Google Scholar 

  18. Cornell RMaUS (2003) The iron oxides (Structure, properties, reactions, occurrences and uses). Wiley, Weinheim

    Google Scholar 

  19. Dean AJ, Bazylinski DA (1999) Genome analysis of several marine, magnetotactic bacterial strains by pulsed-field gel electrophoresis. Curr Microbiol 39:219–225

    Article  PubMed  CAS  Google Scholar 

  20. DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple Evolutionary Origins of Magnetotaxis in Bacteria. Science 259:803–806

    Article  PubMed  CAS  Google Scholar 

  21. Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    Article  PubMed  CAS  Google Scholar 

  22. Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JN, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931–2945

    Article  PubMed  CAS  Google Scholar 

  23. Eden PA, Blakemore RP (1991) Electroporation and conjugal plasmid transfer to members of the genus Aquaspirillum. Arch Microbiol 155:449–452

    Article  PubMed  CAS  Google Scholar 

  24. Errington J (2003) Dynamic proteins and a cytoskeleton in bacteria. Nat Cell Biol 5:175–178

    Article  PubMed  CAS  Google Scholar 

  25. Faivre D, Agrinier P, Menguy N, Zuddas P, Pachana K, Gloter A, Laval J-Y, Guyot F (2004) Mineralogical and isotopic properties of inorganic nanocrystalline magnetites. Geochim Cosmochim Acta 68:4395–4403

    Article  CAS  Google Scholar 

  26. Falkow S (1996) The Evolution of Pathogenicity in Escherichia, Shigella, and Salmonella. ASM Press, Washington, DC

    Google Scholar 

  27. Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000

    Article  PubMed  CAS  Google Scholar 

  28. Fukuda Y, Okamura Y, Takeyama H, Matsunaga T (2006) Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett 580:801–812

    Article  PubMed  CAS  Google Scholar 

  29. Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    PubMed  CAS  Google Scholar 

  30. Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D (2005) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183:9–18

    Article  PubMed  CAS  Google Scholar 

  31. Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335:667–678

    Article  PubMed  CAS  Google Scholar 

  32. Grünberg K, Muller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microb 70:1040–1050

    Article  CAS  Google Scholar 

  33. Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582

    Article  PubMed  Google Scholar 

  34. Guiral S, Henard V, Laaberki MH, Granadel C, Prudhomme M, Martin B, Claverys JP (2006) Construction and evaluation of a chromosomal expression platform (CEP) for ectopic, maltose-driven gene expression in Streptococcus pneumoniae. Microbiology 152:343–349

    Article  PubMed  CAS  Google Scholar 

  35. Handrick R, Reinhardt S, Schultheiss D, Reichart T, Schüler D, Jendrossek V, Jendrossek D (2004) Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB-granule-bound protein (phasin). J Bacteriol 186:2466–2475

    Article  PubMed  CAS  Google Scholar 

  36. Horwitz JP, Chua J, Curby RJ, Tomson AJ, Darooge MA, Fisher BE, Mauricio J, Klundt I (1964) Substrates for Cytochemical Demonstration of Enzyme Activity. I. Some Substituted 3-Indolyl-Beta-D-Glycopyranosides. J Med Chem 53:574–575

    Article  PubMed  CAS  Google Scholar 

  37. Koch B, Jensen LE, Nybroe O (2001) A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods 45:187–195

    Article  PubMed  CAS  Google Scholar 

  38. Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245

    Article  PubMed  CAS  Google Scholar 

  39. Komeili A, Vali H, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci USA 101:3839–3844

    Article  PubMed  CAS  Google Scholar 

  40. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) 4 New Derivatives of the Broad-Host-Range Cloning Vector Pbbr1mcs, Carrying Different Antibiotic-Resistance Cassettes. Gene 166:175–176

    Article  PubMed  CAS  Google Scholar 

  41. Kovach ME, Phillips RW, Elzer PH, Roop RM 2nd, Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802

    PubMed  CAS  Google Scholar 

  42. Li F, Li Y, Jiang W, Wang Z, Li J (2005) Cloning and functional analysis of the sequences flanking mini-Tn5 in the magnetosomes deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1. Sci China C Life Sci 48:574–584

    Article  PubMed  CAS  Google Scholar 

  43. Matsunaga S, Tadokoro (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biot 35:651–655

    Article  CAS  Google Scholar 

  44. Matsunaga T, Nakamura C, Burgess JG, Sode K (1992) Gene transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis. J Bacteriol 174:2748–2753

    PubMed  CAS  Google Scholar 

  45. Matsunaga T, Okamura Y (2003) Genes and proteins involved in bacterial magnetic particle formation. Trends Microbiol 11:536–541

    Article  PubMed  CAS  Google Scholar 

  46. Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium magnetospirillum sp. strain AMB-1. DNA Res 12:157–166

    Article  PubMed  CAS  Google Scholar 

  47. Matsunaga T, Togo H, Kikuchi T, Tanaka T (2000) Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol Bioeng 70:704–709

    Article  PubMed  CAS  Google Scholar 

  48. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB (1995) A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci USA 92:1664–1668

    Article  PubMed  CAS  Google Scholar 

  49. Nakamura C, Burgess JG, Sode K, Matsunaga T (1995a) An iron-regulated gene, magA, encoding an iron transport protein of Magnetospirillum sp. strain AMB-1. J Biol Chem 270:28392–28396

    Article  PubMed  CAS  Google Scholar 

  50. Nakamura C, Kikuchi T, Burgess JG, Matsunaga T (1995b) Iron-regulated expression and membrane localization of the magA protein in Magnetospirillum sp. strain AMB-1. J Biochem (Tokyo) 118:23–27

    CAS  Google Scholar 

  51. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  PubMed  CAS  Google Scholar 

  52. Okamura Y, Takeyama H, Matsunaga T (2001) A magnetosome-specific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. J Biol Chem 276:48183–48188

    Article  PubMed  CAS  Google Scholar 

  53. Okamura Y, Takeyama H, Sekine T, Sakaguchi T, Wahyudi AT, Sato R, Kamiya S, Matsunaga T (2003) Design and application of a new cryptic-plasmid-based shuttle vector for Magnetospirillum magneticum. Appl Environ Microbiol 69:4274–4277

    Article  PubMed  CAS  Google Scholar 

  54. Okuda Y, Denda K, Fukumori Y (1996) Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171:99–102

    Article  PubMed  CAS  Google Scholar 

  55. Okuda Y, Fukumori Y (2001) Expression and characterization of a magnetosome-associated protein, TPR-containing MAM22, in Escherichia coli. FEBS Lett 491:169–173

    Article  PubMed  CAS  Google Scholar 

  56. Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52:215–221

    PubMed  CAS  Google Scholar 

  57. Sakane TaAY (1994) Chemotaxonomic investigation of heterotrophic, aerobic and microaerophilic spirilla, the genera Aquaspirillum, Magnetospirillum and Oceanospirillum. Syst Appl Microbiol 17:128–134

    CAS  Google Scholar 

  58. Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110

    Article  PubMed  CAS  Google Scholar 

  59. Schübbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour MH, Mayer F, Reinhardt R, Schüler D (2003) Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bacteriol 185:5779–5790

    Article  PubMed  CAS  Google Scholar 

  60. Schüler D (2004) Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch Microbiol 181:1–7

    Article  PubMed  CAS  Google Scholar 

  61. Schüler DaDAB (2006) Techniques for studying uncultured and cultured magnetotactic bacteria. ASM, Washington, DC

    Google Scholar 

  62. Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D (2005) The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol 187:2416–2425

    Article  PubMed  CAS  Google Scholar 

  63. Schultheiss D, Kube M, Schüler D (2004) Inactivation of the flagellin gene flaA in Magnetospirillum gryphiswaldense results in nonmagnetotactic mutants lacking flagellar filaments. Appl Environ Microb 70:3624–3631

    Article  CAS  Google Scholar 

  64. Schultheiss D, Schüler D (2003) Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol 179:89–94

    PubMed  CAS  Google Scholar 

  65. Simon R, Priefer U, Puhler A (1983) A Broad Host Range Mobilization System for Invivo Genetic-Engineering – Transposon Mutagenesis in Gram-Negative Bacteria. Bio-Technology 1:784–791

    CAS  Google Scholar 

  66. Southward CM, Surette MG (2002) The dynamic microbe: green fluorescent protein brings bacteria to light. Mol Microbiol 45:1191–1196

    Article  PubMed  CAS  Google Scholar 

  67. Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T (1997) Structures of mollusc shell framework proteins. Nature 387:563–564

    Article  PubMed  CAS  Google Scholar 

  68. Sutcliffe JG (1979) Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harb Symp Quant Biol 43(Pt 1):77–90

    PubMed  CAS  Google Scholar 

  69. Suzuki T, Okamura Y, Calugay RJ, Takeyama H, Matsunaga T (2006) Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. J Bacteriol 188:2275–2279

    Article  PubMed  CAS  Google Scholar 

  70. Taoka A, Asada R, Sasaki H, Anzawa K, Wu LF, Fukumori Y (2006) Spatial Localizations of Mam22 and Mam12 in the Magnetosomes of Magnetospirillum magnetotacticum. J Bacteriol 188:3805–3812

    Article  PubMed  CAS  Google Scholar 

  71. Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D (2005) A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 187:7176–7184

    Article  PubMed  CAS  Google Scholar 

  72. Valdivia RH, Cormack BP, Falkow S (2006) The uses of green fluorescent protein in prokaryotes. Methods Biochem Anal 47:163–178

    Article  PubMed  Google Scholar 

  73. Wahyudi AT, Takeyama H, Matsunaga T (2001) Isolation of Magnetospirillum magneticum AMB-1 mutants defective in bacterial magnetic particle synthesis by transposon mutagenesis. Appl Biochem Biotechnol 91–93:147–154

    Article  PubMed  Google Scholar 

  74. Wahyudi AT, Takeyama H, Okamura Y, Fukuda Y, Matsunaga T (2003) Characterization of aldehyde ferredoxin oxidoreductase gene defective mutant in Magnetospirillum magneticum AMB-1. Biochem Biophys Res Commun 303:223–229

    Article  PubMed  CAS  Google Scholar 

  75. Waleh NS (1988) Functional expression of Aquaspirillum magnetotacticum genes in Escherichia coli K12. Mol Gen Genet 214:592–594

    Article  PubMed  CAS  Google Scholar 

  76. Yoshino T, Matsunaga T (2005) Development of efficient expression system for protein display on bacterial magnetic particles. Biochem Biophys Res Commun 338:1678–1681

    Article  PubMed  CAS  Google Scholar 

  77. Zurovec M, Sehnal F (2002) Unique molecular architecture of silk fibroin in the waxmoth, Galleria mellonella. J Biol Chem 277:22639–22647

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge our students, colleagues, and numerous collaborators. Research in the author's lab is supported by the Max Planck Society, the Deutsche Forschungsgemeinschaft and the German BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schüler .

Editor information

Dirk Schüler

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jogler, C., Schüler, D. (2006). Genetic Analysis of Magnetosome Biomineralization. In: Schüler, D. (eds) Magnetoreception and Magnetosomes in Bacteria. Microbiology Monographs, vol 3. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7171_041

Download citation

Publish with us

Policies and ethics