Recombination and Meiosis

Volume 3 of the series Genome Dynamics and Stability pp 195-230


Meiotic Recombination in Schizosaccharomyces pombe: A Paradigm for Genetic and Molecular Analysis

  • Gareth CromieAffiliated withDivision of Basic Sciences, Fred Hutchinson Cancer Research Center
  • , Gerald R. SmithAffiliated withDivision of Basic Sciences, Fred Hutchinson Cancer Research Center Email author 

* Final gross prices may vary according to local VAT.

Get Access


The fission yeast Schizosaccharomyces pombe is well-suited for both genetic and biochemical analysis of meiotic recombination. Recent studies have revealed ∼50 gene products and two DNA intermediates central to recombination, which we place into a pathway from parental to recombinant DNA. We divide recombination into three stages – chromosome alignment accompanying nuclear “horsetail” movement, formation of DNA breaks, and repair of those breaks – and we discuss the roles of the identified gene products and DNA intermediates in these stages. Although some aspects of recombination are similar to those in the distantly related budding yeast Saccharomyces cerevisiae, other aspects are distinctly different. In particular, many proteins required for recombination in one species have no clear ortholog in the other, and the roles of identified orthologs in regulating recombination often differ. Furthermore, in S. pombe the dominant joint DNA molecule intermediates contain single Holliday junctions, and intersister joint molecules are more frequent than interhomolog types, whereas in S. cerevisiae interhomolog double Holliday junctions predominate. We speculate that meiotic recombination in other organisms shares features of each of these yeasts.