Skip to main content

Model Catalysts Based on Au Clusters and Nanoparticles

  • Chapter
  • First Online:
Gold Clusters, Colloids and Nanoparticles II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 162))

Abstract

Small Au particles have been shown to exhibit interesting catalytic properties. In an attempt to parallel catalytic studies on powder supports we have undertaken a series of model studies using oxide films as support. We address the formation of Au aggregates as a function of size starting from Au atoms to clusters and islands of larger size and as a function of the support. In addition we have studied different support materials such as alumina and iron oxide and we compare ultrathin and thicker oxide films of the same material (MgO). From a comparison of charge transfer through ultrathin films with the situation encountered in thicker films, we propose the use of dopants in bulk materials to control particle shape. We include the study of carbon monoxide adsorption on Au clusters of varying size. It is demonstrated how chemical modification (hydroxylation) of oxide supports influence particle growth and properties. Finally, we report on effects to study the processes involved in particle growth by wet impregnation in order to bridge the gap to catalyst preparation under realistic conditions. On that basis one may now compare properties of supported particles prepared in ultrahigh vacuum using physical vapor deposition with those prepared by wet impregnation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17(9):311–319. doi:10.1021/ar00105a003

    CAS  Google Scholar 

  2. Mingos DMP (1984) Gold cluster compounds. Gold Bull 17(1):5–12. doi:10.1007/BF03214670

    CAS  Google Scholar 

  3. Wade K (1971) The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J Chem Soc D 0(15):792–793. doi:10.1039/C29710000792

    Google Scholar 

  4. Gillespie RJ, Hargittai I (1991) The VSEPR model of molecular geometry, 8th edn. Allyn & Bacon, Boston

    Google Scholar 

  5. Ertl G (2007) Reactions at surfaces: from atoms to complexity. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2007/ertl_lecture.pdf

  6. Schauermann S, Nilius N, Shaikhutdinov S, Freund H-J (2012) Nanoparticles for heterogeneous catalysis: new mechanistic insights. Acc Chem Res. doi:10.1021/ar300225s

    Google Scholar 

  7. Pacchioni G, Freund H (2012) Electron transfer at oxide surfaces. The MgO paradigm: from defects to ultrathin films. Chem Rev 113(6):4035–4072. doi:10.1021/cr3002017

    Google Scholar 

  8. Risse T, Shaikhutdinov S, Nilius N, Sterrer M, Freund H-J (2008) Gold supported on thin oxide films: from single atoms to nanoparticles. Acc Chem Res 41(8):949–956

    CAS  Google Scholar 

  9. Freund H-J (2010) Model studies in heterogeneous catalysis. Chem Eur J 16(31):9384–9397. doi:10.1002/chem.201001724

    CAS  Google Scholar 

  10. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. CatTech 6(3):102–115

    CAS  Google Scholar 

  11. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144(1):175–192. doi:10.1006/jcat.1993.1322

    CAS  Google Scholar 

  12. Winkelmann F, Wohlrab S, Libuda J, Bäumer M, Cappus D, Menges M, Al-Shamery K, Kuhlenbeck H, Freund H-J (1994) Adsorption on oxide surfaces: structure and dynamics. Surf Sci 307–309 (Part 2):1148

    Google Scholar 

  13. Wichtendahl R, Rodriguez-Rodrigo M, Härtel U, Kuhlenbeck H, Freund H-J (1999) TDS study of the bonding of CO and NO to vacuum-cleaved NiO(100). Surf Sci 423(1):90–98

    CAS  Google Scholar 

  14. Wichtendahl R, Rodriguez-Rodrigo M, Härtel U, Kuhlenbeck H, Freund H-J (1999) Thermodesorption of CO and NO from vacuum-cleaved NiO(100) and MgO(100). Phys Status Solidi A 173(1):93–100. doi:10.1002/(sici)1521-396x(199905)173:1<93::aid-pssa93>3.0.co;2-4

    CAS  Google Scholar 

  15. Sterrer M, Risse T, Heyde M, Rust H-P, Freund H-J (2007) Crossover from three-dimensional to two-dimensional geometries of Au nanostructures on thin MgO(001) films: a confirmation of theoretical predictions. Phys Rev Lett 98(20):206103

    Google Scholar 

  16. Yulikov M, Sterrer M, Heyde M, Rust HP, Risse T, Freund H-J, Pacchioni G, Scagnelli A (2006) Binding of single gold atoms on thin MgO(001) films. Phys Rev Lett 96(14):146804

    Google Scholar 

  17. Nambu A, Graciani J, Rodriguez JA, Wu Q, Fujita E, Sanz JF (2006) N doping of TiO2(110): photoemission and density-functional studies. J Chem Phys 125(9):094706

    CAS  Google Scholar 

  18. Rodriguez JA, Hanson JC, Kim J-Y, Liu G, Iglesias-Juez A, Fernández-García M (2003) Properties of CeO2 and Ce1-xZrxO2 nanoparticles: X-ray absorption near-edge spectroscopy, density functional, and time-resolved X-ray diffraction studies. J Phys Chem B 107(15):3535–3543. doi:10.1021/jp022323i

    CAS  Google Scholar 

  19. Xu Y, Li J, Zhang Y, Chen W (2003) CO adsorption on MgO(001) surface with oxygen vacancy and its low-coordinated surface sites: embedded cluster model density functional study employing charge self-consistent technique. Surf Sci 525(1–3):13–23. doi:10.1016/s0039-6028(02)02566-9

    CAS  Google Scholar 

  20. Neyman KM, Ruzankin SP, Rösch N (1995) Adsorption of CO molecules on a MgO(001) surface. Model cluster density functional study employing a gradient-corrected potential. Chem Phys Lett 246(6):546–554. doi:10.1016/0009-2614(95)01150-X

    CAS  Google Scholar 

  21. Neyman KM, Roesch N (1992) Co bonding and vibrational-modes on a perfect Mgo (001) surface – Lcgto-Ldf model cluster investigation. Chem Phys 168(2–3):267–280

    CAS  Google Scholar 

  22. Pacchioni G (2000) Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity. Solid State Sci 2(2):161–179. doi:10.1016/s1293-2558(00)00113-8

    Google Scholar 

  23. Del Vitto A, Pacchioni G, Delbecq F, Sautet P (2005) Au atoms and dimers on the MgO(100) surface: a DFT study of nucleation at defects. J Phys Chem B 109(16):8040–8048

    Google Scholar 

  24. Street SC, Xu C, Goodman DW (1997) The physical and chemical properties of ultrathin oxide films. Annu Rev Phys Chem 48(1):43–68. doi:10.1146/annurev.physchem.48.1.43

    CAS  Google Scholar 

  25. Chambers SA (2000) Epitaxial growth and properties of thin film oxides. Surf Sci Rep 39(5):105–180

    CAS  Google Scholar 

  26. Bäumer M, Freund H-J (1999) Metal deposits on well-ordered oxide films. Progr Surf Sci 61(7–8):127–198. doi:10.1016/s0079-6816(99)00012-x

    Google Scholar 

  27. Giordano L, Cinquini F, Pacchioni G (2006) Tuning the surface metal work function by deposition of ultrathin oxide films: density functional calculations. Phys Rev B 73(4):045414

    Google Scholar 

  28. Pacchioni G, Giordano L, Baistrocchi M (2005) Charging of metal atoms on ultrathin MgO/Mo(100) films. Phys Rev Lett 94(22):226104

    Google Scholar 

  29. Bonzel HP (1988) Alkali-metal-affected adsorption of molecules on metal-surfaces. Surf Sci Rep 8(2):43–125

    Google Scholar 

  30. Diehl RD, McGrath R (1996) Structural studies of alkali metal adsorption and coadsorption on metal surfaces. Surf Sci Rep 23(2–5):43–171. doi:10.1016/0167-5729(95)00010-0

    CAS  Google Scholar 

  31. Kliewer J, Berndt R (2001) Low temperature scanning tunneling microscopy of Na on Cu(111). Surf Sci 477(2–3):250–258. doi:10.1016/S0039-6028(01)00891-3

    CAS  Google Scholar 

  32. Sterrer M, Risse T, Martinez Pozzoni U, Giordano L, Heyde M, Rust H-P, Pacchioni G, Freund H-J (2007) Control of the charge state of metal atoms on thin MgO films. Phys Rev Lett 98(9):096107

    Google Scholar 

  33. Sterrer M, Risse T, Giordano L, Heyde M, Nilius N, Rust HP, Pacchioni G, Freund H-J (2007) Palladium monomers, dimers, and trimers on the MgO(001) surface viewed individually. Angew Chem Int Ed 46(45):8703–8706

    CAS  Google Scholar 

  34. Wu SW, Ogawa N, Nazin GV, Ho W (2008) Conductance hysteresis and switching in a single-molecule junction. J Phys Chem C 112(14):5241–5244. doi:10.1021/jp7114548

    CAS  Google Scholar 

  35. Wu SW, Nazin GV, Chen X, Qiu XH, Ho W (2004) Control of relative tunneling rates in single molecule bipolar electron transport. Phys Rev Lett 93(23):236802

    CAS  Google Scholar 

  36. Jaeger RM, Kuhlenbeck H, Freund H-J, Wuttig M, Hoffmann W, Franchy R, Ibach H (1991) Formation of a well-ordered aluminium oxide overlayer by oxidation of NiA(110). Surf Sci 259(3):235–252. doi:10.1016/0039-6028(91)90555-7

    CAS  Google Scholar 

  37. Nilius N, Ganduglia-Pirovano VG, Bradzova V, Kulawik M, Sauer J, Freund H-J (2008) Counting electrons transferred through a thin alumina film into Au chains. Phys Rev Lett 100(9):09802–1–4

    Google Scholar 

  38. Giordano L, Pacchioni G (2011) Oxide films at the nanoscale: new structures, new functions, and new materials. Acc Chem Res 44(11):1244–1252. doi:10.1021/ar200139y

    CAS  Google Scholar 

  39. Nilius N, Ganduglia-Pirovano MV, Brazdova V, Kulawik M, Sauer J, Freund H-J (2010) Electronic properties and charge state of gold monomers and chains adsorbed on alumina thin films on NiAl(110). Phys Rev B 81(4):045422

    Google Scholar 

  40. Kulawik M, Nilius N, Freund H-J (2006) Influence of the metal substrate on the adsorption properties of thin oxide layers: Au atoms on a thin alumina film on NiAl(110). Phys Rev Lett 96(3):036103

    CAS  Google Scholar 

  41. Hamers RJ (1989) Atomic-resolution surface spectroscopy with the scanning tunneling microscope. Annu Rev Phys Chem 40(1):531–559. doi:10.1146/annurev.pc.40.100189.002531

    CAS  Google Scholar 

  42. Tersoff J, Hamann DR (1983) Theory and application for the scanning tunneling microscope. Phys Rev Lett 50(25):1998–2001

    CAS  Google Scholar 

  43. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  44. Schmid M, Shishkin M, Kresse G, Napetschnig E, Varga P, Kulawik M, Nilius N, Rust HP, Freund H-J (2006) Oxygen-deficient line defects in an ultrathin aluminum oxide film. Phys Rev Lett 97(4):046101–046104

    CAS  Google Scholar 

  45. Rienks EDL, Nilius N, Rust HP, Freund H-J (2005) Surface potential of a polar oxide film: FeO on Pt(111). Phys Rev B 71:2414041–2414044

    Google Scholar 

  46. Giordano L, Pacchioni G, Goniakowski J, Nilius N, Rienks EDL, Freund H-J (2008) Charging of metal adatoms on ultrathin oxide Films: Au and Pd on FeO/Pt(111). Phys Rev Lett 101(2):026102

    Google Scholar 

  47. Simic-Milosevic V, Heyde M, Nilius N, Koenig T, Rust HP, Sterrer M, Risse T, Freund H-J, Giordano L, Pacchioni G (2008) Au dimers on thin MgO(001) films: flat and charged or upright and neutral? J Am Chem Soc 130(25):7814–7815. doi:10.1021/ja8024388

    CAS  Google Scholar 

  48. Simic-Milosevic V, Heyde M, Lin X, König T, Rust H-P, Sterrer M, Risse T, Nilius N, Freund H-J, Giordano L, Pacchioni G (2008) Charge-induced formation of linear Au clusters on thin MgO films: scanning tunneling microscopy and density-functional theory study. Phys Rev B 78(23):235429

    Google Scholar 

  49. Nilius N (2009) Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf Sci Rep 64(12):595–659

    CAS  Google Scholar 

  50. Frondelius P, Häkkinen H, Honkala K (2007) Adsorption of small Au clusters on MgO and MgO/Mo: the role of oxygen vacancies and the Mo-support. New J Phys 9:339. doi:10.1088/1367-2630/9/9/339

    Google Scholar 

  51. Nilius N, Wallis TM, Ho W (2002) Development of one-dimensional band structure in artificial gold chains. Science 297:1853–1856

    CAS  Google Scholar 

  52. Wallis TM, Nilius N, Ho W (2002) Electronic density oscillations in gold atomic chains assembled atom by atom. Phys Rev Lett 89(23):236802

    CAS  Google Scholar 

  53. Nilius N, Wallis TM, Persson M, Ho W (2003) Distance dependence of the interaction between single atoms: gold dimers on NiAl(110). Phys Rev Lett 90(19):196103

    CAS  Google Scholar 

  54. Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:231–326

    CAS  Google Scholar 

  55. Ricci D, Bongiorno A, Pacchioni G, Landman U (2006) Bonding trends and dimensionality crossover of gold nanoclusters on metal-supported MgO thin films. Phys Rev Lett 97(3):036106

    Google Scholar 

  56. Lin X, Nilius N, Freund H-J, Walter M, Frondelius P, Honkala K, Häkkinen H (2009) Quantum well states in two-dimensional gold clusters on MgO thin films. Phys Rev Lett 102(20):206801–1–4

    Google Scholar 

  57. Lin X, Nilius N, Sterrer M, Koskinen P, Haekkinen H, Freund H-J (2010) Characterizing low-coordinated atoms at the periphery of MgO-supported Au islands using scanning tunneling microscopy and electronic structure calculations. Phys Rev B 81 (15):153406–1–4

    Google Scholar 

  58. Andersin J, Nevalaita J, Honkala K, Häkkinen H (2013) The redox chemistry of gold with high-valence doped calcium oxide. Angew Chem Int Ed 52(5):1424–1427. doi:10.1002/anie.201208443

    CAS  Google Scholar 

  59. Walter M, Frondelius P, Honkala K, Häkkinen H (2007) Electronic structure of MgO-supported au clusters: quantum dots probed by scanning tunneling microscopy. Phys Rev Lett 99(9):096102

    Google Scholar 

  60. de Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65(3):611–676

    Google Scholar 

  61. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 281:1647–1650

    CAS  Google Scholar 

  62. Cabrera N, Mott NF (1948) Theory of the oxidation of metals. Rep Progr Phys 12:163

    Google Scholar 

  63. Molina LM, Hammer B (2005) Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl Catal A 291(1–2):21–31. doi:10.1016/j.apcata.2005.01.050

    CAS  Google Scholar 

  64. Green IX, Tang WJ, Neurock M, Yates JT (2011) Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333:736–739

    CAS  Google Scholar 

  65. Abbet S, Riedo E, Brune H, Heiz U, Ferrari AM, Giordano L, Pacchioni G (2001) Identification of defect sites on MgO(100) thin films by decoration with Pd atoms and studying CO adsorption properties. J Am Chem Soc 123(25):6172–6178

    CAS  Google Scholar 

  66. Lin X, Yang B, Benia HM, Myrach P, Yulikov M, Aumer A, Brown M, Sterrer M, Bondarchuk O, Kieseritzky E, Rocker J, Risse T, Gao H, Nilius N, Freund H-J (2010) Charge-mediated adsorption behavior of CO on MgO-supported Au clusters. J Am Chem Soc 132(22):7745–7749

    CAS  Google Scholar 

  67. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45(47):7896–7936. doi:10.1002/anie.200602454

    Google Scholar 

  68. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321:1331–1335. doi:10.1126/science.1159639

    CAS  Google Scholar 

  69. Chen MS, Goodman DW (2004) The structure of catalytically active Au on titania. Science 306:252–255

    CAS  Google Scholar 

  70. Ekardt W (ed) (1999) Metal clusters. Wiley, Chichester

    Google Scholar 

  71. Kreibig U, Vollmer W (eds) (1995) Optical properties of metal clusters, vol 25. Springer series in materials science. Springer, Berlin-New York

    Google Scholar 

  72. Wendt S, Sprunger PT, Lira E, Madsen GKH, Li Z, Hansen JØ, Matthiesen J, Blekinge-Rasmussen A, Lægsgaard E, Hammer B, Besenbacher F (2008) The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320(5884):1755–1759. doi:10.1126/science.1159846

    CAS  Google Scholar 

  73. Kim HY, Lee HM, Pala RGS, Shapovalov V, Metiu H (2008) CO oxidation by rutile TiO2(110) doped with V, W, Cr, Mo, and Mn. J Phys Chem C 112(32):12398–12408. doi:10.1021/jp802296g

    CAS  Google Scholar 

  74. Shapovalov V, Metiu H (2007) Catalysis by doped oxides: CO oxidation by AuxCe1–xO2. J Catal 245(1):205–214. doi:10.1016/j.jcat.2006.10.009

    CAS  Google Scholar 

  75. Mammen N, Narasimhan S, Sd G (2011) Tuning the morphology of gold clusters by substrate doping. J Am Chem Soc 133(9):2801–2803. doi:10.1021/ja109663g

    CAS  Google Scholar 

  76. Wang JX, Lunsford JH (1986) Characterization of [Li+O] centers in lithium-doped magnesium oxide catalysts. J Phys Chem 90(22):5883–5887. doi:10.1021/j100280a084

    CAS  Google Scholar 

  77. Ito T, Wang J, Lin CH, Lunsford JH (1985) Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. J Am Chem Soc 107(18):5062–5068. doi:10.1021/ja00304a008

    CAS  Google Scholar 

  78. Pala RGS, Metiu H (2007) The structure and energy of oxygen vacancy formation in clean and doped, very thin films of ZnO. J Phys Chem C 111(34):12715–12722. doi:10.1021/jp073424p

    CAS  Google Scholar 

  79. Nolan M, Verdugo VS, Metiu H (2008) Vacancy formation and CO adsorption on gold-doped ceria surfaces. Surf Sci 602(16):2734–2742. doi:10.1016/j.susc.2008.06.028

    CAS  Google Scholar 

  80. Shao X, Prada S, Giordano L, Pacchioni G, Nilius N, Freund H-J (2011) Tailoring the shape of metal Ad-particles by doping the oxide support. Angew Chem Int Ed 50(48):11525–11527. doi:10.1002/anie.201105355

    CAS  Google Scholar 

  81. Stavale F, Shao X, Nilius N, Freund H-J, Prada S, Giordano L, Pacchioni G (2012) Donor characteristics of transition-metal-doped oxides: Cr-Doped MgO versus Mo-doped CaO. J Am Chem Soc 134(28):11380–11383. doi:10.1021/ja304497n

    CAS  Google Scholar 

  82. Stavale F, Nilius N, Freund H-J (2012) Cathodoluminescence of near-surface centres in Cr-doped MgO(001) thin films probed by scanning tunnelling microscopy. New J Phys 14:033006. doi:http://iopscience.iop.org/1367-2630/14/3/033006/

    Google Scholar 

  83. Prada S, Giordano L, Pacchioni G (2013) Charging of gold atoms on doped MgO and CaO: identifying the key parameters by DFT calculations. J Phys Chem C 117(19):9943–9951. doi:10.1021/jp401983m

    CAS  Google Scholar 

  84. Henderson B, Imbusch GF (eds) (1989) Optical spectroscopy of inorganic solids. Oxford University Press, Oxford

    Google Scholar 

  85. Lide DR (1996) CRC handbook of chemistry and physics. CRC Press Inc, Boca Raton

    Google Scholar 

  86. Benia HM, Myrach P, Gonchar A, Risse T, Nilius M, Freund H-J (2010) Electron trapping in misfit dislocations of MgO thin films. Phys Rev B 81:241415. doi:http://link.aps.org/doi/10.1103/PhysRevB.81.241415

    Google Scholar 

  87. Li B, Metiu H (2010) DFT studies of oxygen vacancies on undoped and doped La2O3 surfaces. J Phys Chem C 114(28):12234–12244. doi:10.1021/jp103604b

    CAS  Google Scholar 

  88. Hu Z, Li B, Sun X, Metiu H (2011) Chemistry of doped oxides: the activation of surface oxygen and the chemical compensation effect. J Phys Chem C 115(7):3065–3074. doi:10.1021/jp110333z

    CAS  Google Scholar 

  89. Shao X, Nilius N, Freund H-J (2012) Li/Mo codoping of CaO films: a means to tailor the equilibrium shape of Au deposits. J Am Chem Soc 134(5):2532–2534. doi:10.1021/ja211396t

    CAS  Google Scholar 

  90. Sterrer M, Heyde M, Novicki M, Nilius N, Risse T, Rust HP, Pacchioni G, Freund H-J (2006) Identification of color centers on MgO(001) thin films with scanning tunneling microscopy. J Phys Chem B 110(1):46–49. doi:10.1021/jp056306f

    CAS  Google Scholar 

  91. Myrach P, Nilius N, Levchenko SV, Gonchar A, Risse T, Dinse K-P, Boatner LA, Frandsen W, Horn R, Freund H-J, Schlögl R, Scheffler M (2010) Temperature-dependent morphology, magnetic and optical properties of Li-doped MgO. ChemCatChem 2(7):854–862. doi:10.1002/cctc.201000083

    CAS  Google Scholar 

  92. Mihaylov M, Knözinger H, Hadjiivanov K, Gates BC (2007) Characterization of the oxidation states of supported gold species by IR spectroscopy of adsorbed CO. Chem Ing Tech 79(6):795–806. doi:10.1002/cite.200700029

    CAS  Google Scholar 

  93. Sterrer M, Yulikov M, Risse T, Freund H-J, Carrasco J, Illas F, Di Valentin C, Giordano L, Pacchioni G (2006) When the reporter induces the effect: unusual IR spectra of CO on Au1/MgO(001)/Mo(001). Angew Chem Int Ed 45(16):2633–2635. doi:10.1002/anie.200504473

    CAS  Google Scholar 

  94. Yang B, Lin X, Gao H-J, Nilius N, Freund H-J (2010) CO adsorption on thin MgO films and single Au adatoms: a scanning tunneling microscopy study. J Phys Chem C 114(19):8997–9001. doi:10.1021/jp100757y

    CAS  Google Scholar 

  95. Ho W (2002) Single-molecule chemistry. J Chem Phys 117(24):11033–11061

    CAS  Google Scholar 

  96. Lauhon LJ, Ho W (1999) Single-molecule vibrational spectroscopy and microscopy:CO on Cu(001) and Cu(110). Phys Rev B 60(12):R8525–R8528

    CAS  Google Scholar 

  97. Nilius N, Wallis TM, Ho W (2002) Vibrational spectroscopy and imaging of single molecules: bonding of CO to single palladium atoms on NiAl(110). J Chem Phys 117(24):10947–10952

    CAS  Google Scholar 

  98. Wang H, Tobin RG, Lambert DK (1994) Coadsorption of hydrogen and CO on Pt(335): structure and vibrational Stark effect. J Chem Phys 101(5):4277–4287

    CAS  Google Scholar 

  99. Hammer B (2006) Special sites at noble and late transition metal catalysts. Top Catal 37(1):3–16. doi:10.1007/s11244-006-0004-y

    CAS  Google Scholar 

  100. Sicolo S, Giordano L, Pacchioni G (2009) CO Adsorption on one-, two-, and three-dimensional au clusters supported on MgO/Ag(001) ultrathin films. J Phys Chem C 113(23):10256–10263. doi:10.1021/jp9023266

    CAS  Google Scholar 

  101. Blyholder G (1964) Molecular orbital view of chemisorbed carbon monoxide. J Phys Chem 68:2772–2778

    CAS  Google Scholar 

  102. Hövel H, Barke I (2003) Large noble metal clusters: electron confinement and band structure effects. New J Phys 5(1):31

    Google Scholar 

  103. Benia HM, Lin X, Gao HJ, Nilius N, Freund H-J (2007) Nucleation and growth of gold on MgO thin films: a combined STM and luminescence study. J Phys Chem C 111(28):10528–10533

    CAS  Google Scholar 

  104. Fielicke A, von Helden G, Meijer G, Simard B, Rayner DM (2005) Gold cluster carbonyls: vibrational spectroscopy of the anions and the effects of cluster size, charge, and coverage on the CO stretching frequency. J Phys Chem B 109(50):23935–23940

    CAS  Google Scholar 

  105. Shaikhutdinov SK, Meyer R, Naschitzki M, Bäumer M, Freund H-J (2003) Size and support effects for CO adsorption on gold model catalysts. Catal Lett 86(4):211–219. doi:10.1023/a:1022616102162

    CAS  Google Scholar 

  106. Ruggiero C, Hollins P (1997) Interaction of CO molecules with the Au(332) surface. Surf Sci 377–379(0):583–586. doi:10.1016/S0039-6028(96)01451-3

    Google Scholar 

  107. Weststrate CJ, Lundgren E, Andersen JN, Rienks EDL, Gluhoi AC, Bakker JW, Groot IMN, Nieuwenhuys BE (2009) CO adsorption on Au(310) and Au(321): 6-fold coordinated gold atoms. Surf Sci 603(13):2152–2157. doi:10.1016/j.susc.2009.04.026

    CAS  Google Scholar 

  108. Lemire C, Meyer R, Shaikhutdinov SK, Freund H-J (2004) CO adsorption on oxide supported gold: from small clusters to monolayer islands and three-dimensional nanoparticles. Surf Sci 552(1–3):27–34. doi:10.1016/j.susc.2004.01.029

    CAS  Google Scholar 

  109. Nilius N, Rienks EDL, Rust H-P, Freund H-J (2005) Self-organization of gold atoms on a polar FeO(111) surface. Phys Rev Lett 95(6):066101

    Google Scholar 

  110. Meyer R, Lemire C, Shaikhutdinov SK, Freund H-J (2004) Surface chemistry of catalysis by gold. Gold Bull 37(1–2):72–124. doi:10.1007/bf03215519

    CAS  Google Scholar 

  111. Starr DE, Pazhetnov EM, Stadnichenko AI, Boronin AI, Shaikhutdinov SK (2006) Carbon films grown on Pt(111) as supports for model gold catalysts. Surf Sci 600(13):2688–2695. doi:10.1016/j.susc.2006.04.035

    CAS  Google Scholar 

  112. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 °C. Chem Lett 2:405–408. doi:10.1246/cl.1987.405

    Google Scholar 

  113. Liu P, Kendelewicz T, Gordon GE, Parks GA (1998) Reaction of water with MgO(100) surfaces. Part I: synchrotron X-ray photoemission studies of low-defect surfaces. Surf Sci 412–13:287–314. doi:10.1016/s0039-6028(98)00444-0

    Google Scholar 

  114. Mejias JA, Berry AJ, Refson K, Fraser DG (1999) The kinetics and mechanism of MgO dissolution. Chem Phys Lett 314(5–6):558–563. doi:10.1016/s0009-2614(99)00909-4

    CAS  Google Scholar 

  115. Carrasco E, Brown MA, Sterrer M, Freund H-J, Kwapien K, Sierka M, Sauer J (2010) Thickness-dependent hydroxylation of MgO(001) thin films. J Phys Chem C 114(42):18207–18214. doi:10.1021/jp105294e

    CAS  Google Scholar 

  116. Brown MA, Fujimori Y, Ringleb F, Shao X, Stavale F, Nilius N, Sterrer M, Freund H-J (2011) Oxidation of Au by surface OH: nucleation and electronic structure of gold on hydroxylated MgO(001). J Am Chem Soc 133(27):10668–10676. doi:10.1021/ja204798z

    CAS  Google Scholar 

  117. Brown MA, Carrasco E, Sterrer M, Freund H-J (2010) Enhanced stability of gold clusters supported on hydroxylated MgO(001) surfaces. J Am Chem Soc 132(12):4064–4065. doi:10.1021/ja100343m

    CAS  Google Scholar 

  118. Veith GM, Lupini AR, Dudney NJ (2009) Role of pH in the formation of structurally stable and catalytically active TiO2-supported gold catalysts. J Phys Chem C 113(1):269–280. doi:10.1021/jp808249f

    CAS  Google Scholar 

  119. Chizallet C, Costentin G, Che M, Delbecq F, Sautet P (2007) Infrared characterization of hydroxyl groups on MgO: a periodic and cluster density functional theory study. J Am Chem Soc 129(20):6442–6452. doi:10.1021/ja068720e

    CAS  Google Scholar 

  120. Zanella R, Delannoy L, Louis C (2005) Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea. Appl Catal A 291(1–2):62–72. doi:10.1016/j.apcata.2005.02.045

    CAS  Google Scholar 

  121. Wang HF, Ariga H, Dowler R, Sterrer M, Freund H-J (2012) Surface science approach to catalyst preparation – Pd deposition onto thin Fe3O4(111) films from PdCl2 precursor. J Catal 286:1–5. doi:10.1016/j.jcat.2011.09.026

    CAS  Google Scholar 

  122. Wang HF, Kaden WE, Dowler R, Sterrer M, Freund H-J (2012) Model oxide-supported metal catalysts – comparison of ultrahigh vacuum and solution based preparation of Pd nanoparticles on a single-crystalline oxide substrate. Phys Chem Chem Phys 14(32):11525–11533. doi:10.1039/c2cp41459g

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Freund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nilius, N., Risse, T., Shaikhutdinov, S., Sterrer, M., Freund, HJ. (2013). Model Catalysts Based on Au Clusters and Nanoparticles. In: Mingos, D. (eds) Gold Clusters, Colloids and Nanoparticles II. Structure and Bonding, vol 162. Springer, Cham. https://doi.org/10.1007/430_2013_135

Download citation

Publish with us

Policies and ethics