Skip to main content

On the Equation div u = g and Bogovskii’s Operator in Sobolev Spaces of Negative Order

  • Chapter

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 168))

Abstract

Consider the divergence problem with homogeneous Dirichlet data on a Lipschitz domain. Two approaches for its solutions in the scale of Sobolev spaces are presented. The first one is based on Calderón-Zygmund theory, whereas the second one relies on the Stokes equation with inhomogeneous data.

The first author was financially supported by the DFG-Graduiertenkolleg 853, TU Darmstadt. The second author was financially supported by the JSPS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Bogovskii, Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR. 248 (1979), (5), 1037–1040.

    Google Scholar 

  2. M.E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad. Trudy Seminar S. Sobolev, No. 1, 1980, Akademia Nauk SSSR, Sibirskoe Otdelnie Matematiki, Novosibirsk, (1980), 5–40.

    Google Scholar 

  3. W. Borchers and H. Sohr, On the equations rot v = g and div u = f with zero boundary conditions, Hokkaido Math. J. 19 (1990), (1), 67–87.

    MATH  MathSciNet  Google Scholar 

  4. L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova 31 (1961), 308–340.

    MATH  MathSciNet  Google Scholar 

  5. P. Clément, and S. Li, Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. Math. Sci. Appl., 3 (1993/94), 17–32.

    MathSciNet  Google Scholar 

  6. A.P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan 46 (1994), (4), 607–643.

    Article  MATH  MathSciNet  Google Scholar 

  8. G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer, 1994, Linearized steady problems.

    Google Scholar 

  9. M. Geissert, H. Heck, and M. Hieber, L p-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, to appear in J. Reine Angew. Math.

    Google Scholar 

  10. G.P. Galdi and C.G. Simader, Existence, uniqueness and L q-estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112 (1990), (4), 291–318.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Kozono and H. Sohr, New a priori estimates for the Stokes equations in exterior domains. Indiana Univ. Math. J. 40 (1991), (1), 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  12. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, 1969.

    Google Scholar 

  13. D. Mitrea and M. Mitrea, The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in Sobolev-Besov spaces on nonsmooth domains. Preprint, 2005.

    Google Scholar 

  14. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris, 1967.

    Google Scholar 

  15. K. Pileckas, Three-dimensional solenoidal vectors. J. Soviet Math. 21 (1983), 821–823.

    Article  MATH  Google Scholar 

  16. H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, 2001.

    Google Scholar 

  17. V.A. Solonnikov, Stokes and Navier-Stokes equations in domains with noncompact boundaries, In: Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IV (Paris, 1981/1982), Res. Notes in Math., Vol. 84, Pitman, 1983, 240–349.

    MathSciNet  Google Scholar 

  18. V.A. Solonnikov and V.E. Ščadilov, On a boundary value problem for stationary Navier-Stokes equations, Proc. Steklov Math. Inst. 125 (1973), 186–199.

    MATH  Google Scholar 

  19. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  20. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd ed. Johann Ambrosius Barth, Heidelberg, Leipzig, 1995.

    MATH  Google Scholar 

  21. W. von Wahl, On necessary and sufficient conditions for the solvability of the equations rot u = γ and div u = ε with u vanishing on the boundary, The Navier-Stokes equations (Oberwolfach, 1988), Springer Lecture Notes in Math 1431, 1990, 152–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Philippe Clément on the occasion of his retirement

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Geißert, M., Heck, H., Hieber, M. (2006). On the Equation div u = g and Bogovskii’s Operator in Sobolev Spaces of Negative Order. In: Koelink, E., van Neerven, J., de Pagter, B., Sweers, G., Luger, A., Woracek, H. (eds) Partial Differential Equations and Functional Analysis. Operator Theory: Advances and Applications, vol 168. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7601-5_7

Download citation

Publish with us

Policies and ethics