Approximation Bounds for a General Class of Precedence Constrained Parallel Machine Scheduling Problems
 Alix Munier,
 Maurice Queyranne,
 Andreas S. Schulz
 … show all 3 hide
Purchase on Springer.com
$29.95 / €24.95 / £19.95*
* Final gross prices may vary according to local VAT.
Abstract
A well studied and difficult class of scheduling problems con cerns parallel machines and precedence constraints. In order to model more realistic situations, we consider precedence delays, associating with each precedence constraint a certain amount of time which must elapse between the completion and start times of the corresponding jobs. Re lease dates, among others, may be modeled in this fashion. We provide the first constantfactor approximation algorithms for the makespan and the total weighted completion time objectives in this general class of problems. These algorithms are rather simple and practical forms of list scheduling. Our analysis also unifies and simplifies that of a number of special cases heretofore separately studied, while actually improving some of the former approximation results.
 A. von Arnim, R. Schrader, and Y. Wang. The permutahedron of Nsparse posets. Mathematical Programming, 75:1–18, 1996.
 A. von Arnim and A. S. Schulz. Facets of the generalized permutahedron of a poset. Discrete Applied Mathematics, 72:179–192, 1997. CrossRef
 E. Balas, J. K. Lenstra, and A. Vazacopoulos. The one machine problem with delayed precedence constraints and its use in jobshop scheduling. Management Science, 41:94–109, 1995.
 M. Bartusch, R. H. Möhring, and F. J. Radermacher. Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16:201–240, 1988. CrossRef
 D. Bernstein and I. Gertner. Scheduling expressions on a pipelined processor with a maximum delay of one cycle. ACM Transactions on Programming Languages and Systems, 11:57–66, 1989. CrossRef
 J. Bruno, J. W. Jones, and K. So. Deterministic scheduling with pipelined processors. IEEE Transactions on Computers, C29:308–316, 1980. CrossRef
 S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein. Improved scheduling algorithms for minsum criteria. In F. Meyer auf der Heide and B. Monien, editors, Automata, Languages and Programming, LNCS, Vol. 1099, pages 646–657. Springer, Berlin, 1996.
 C. S. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average completion time scheduling. In Proceedings of the 8th ACMSIAM Symposium on Discrete Algorithms, pages 609–618, 1997.
 P. Chrétienne and C. Picouleau. Scheduling with communication delays: A survey. In P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu, editors, Scheduling Theory and its Applications, chapter 4, pages 65–90. John Wiley & Sons, 1995.
 F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedenceconstrained scheduling problems on parallel machines that run at different speeds. In Proceedings of the 8th ACMSIAM Symposium on Discrete Algorithms, pages 581–590, 1997.
 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NPCompleteness. Freeman, San Francisco, 1979.
 M. X. Goemans. Improved approximation algorithms for scheduling with release dates. In Proceedings of the 8th ACMSIAM Symposium on Discrete Algorithms, pages 591–598, 1997.
 M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella, and Y. Wang. Single machine scheduling with release dates. Working paper, 1997.
 R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech. J., 45:1563–1581, 1966.
 R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:287–326, 1979. CrossRef
 L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time: Offline and online approximation algorithms. Mathematics of Operations Research, 22:513–544, 1997.
 W. Herroelen and E. Demeulemeester. Recent advances in branchandbound procedures for resourceconstrained project scheduling problems. In P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu, editors, Scheduling Theory and its Applications, chapter 12, pages 259–276. John Wiley & Sons, 1995.
 J. A. Hoogeveen, P. Schuurman, and G. J. Woeginger. Nonapproximability results for scheduling problems with minsum criteria. In R. E. Bixby, E. A. Boyd, and R. Z. RíosMercado, editors, Proceedings of the 6th International IPCO Conference, LNCS, Vol. 1412, pages 344–357. Springer, 1998. This volume.
 J. A. Hoogeveen, B. Veltman, and J. K. Lenstra. Three, four, five, six, or the complexity of scheduling with communication delays. Operations Research Letters, 3:129–137, 1994. CrossRef
 J. M. Jaffe. Efficient scheduling of tasks without full use of processor resources. Theoretical Computer Science, 12:1–17, 1980. CrossRef
 E. Lawler, J. K. Lenstra, C. Martel, B. Simons, and L. Stockmeyer. Pipeline scheduling: A survey. Technical Report RJ 5738 (57717), IBM Research Division, San Jose, California, 1987.
 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and scheduling: Algorithms and complexity. In S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, editors, Logistics of Production and Inventory, Handbooks in Operations Research and Management Science, Vol. 4, chapter 9, pages 445–522. NorthHolland, Amsterdam, The Netherlands, 1993.
 J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling under precedence constraints. Operations Research, 26:22–35, 1978.
 J. Y.T. Leung, O. Vornberger, and J. Witthoff. On some variants of the bandwidth minimization problem. SIAM J. Computing, 13:650–667, 1984. CrossRef
 R. H. Möhring, M. W. Schäffter, and A. S. Schulz. Scheduling jobs with communication delays: Using infeasible solutions for approximation. In J. Diaz and M. Serna, editors, AlgorithmsESA’96, LNCS, Vol. 1136, pages 76–90. Springer, Berlin, 1996.
 A. Munier and J.C. König. A heuristic for a scheduling problem with communication delays. Operations Research, 45:145–147, 1997.
 A. Munier, M. Queyranne, and A. S. Schulz. Approximation bounds for a general class of precedence constrained parallel machine scheduling problems. Preprint 584/1998, Department of Mathematics, Technical University of Berlin, Berlin, Germany, 1998. ftp://ftp.math.tuberlin.de/pub/Preprints/combi/ Report5841998.ps.Z
 K. W. Palem and B. Simons. Scheduling time critical instructions on RISC machines. In Proceedings of the 17th Annual Symposium on Principles of Programming Languages, pages 270–280, 1990.
 C. Phillips, C. Stein, and J. Wein. Scheduling jobs that arrive over time. In Proceedings of the Fourth Workshop on Algorithms and Data Structures, LNCS, Vol. 955, pages 86–97. Springer, Berlin, 1995.
 M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical Programming, 58:263–285, 1993. CrossRef
 M. Queyranne and Y. Wang. Singlemachine scheduling polyhedra with precedence constraints. Mathematics of Operations Research, 16:1–20, 1991. CrossRef
 V. J. RaywardSmith. UET scheduling with unit interprocessor communication delays. Discrete Applied Mathematics, 18:55–71, 1987. CrossRef
 A. S. Schulz. Polytopes and Scheduling. PhD thesis, Technical University of Berlin, Berlin, Germany, 1996.
 A. S. Schulz. Scheduling to minimize total weighted completion time: Performance guarantees of LPbased heuristics and lower bounds. In W. H. Cunningham, S. T. McCormick, and M. Queyranne, editors, Integer Programming and Combinatorial Optimization, LNCS, Vol. 1084, pages 301–315. Springer, Berlin, 1996.
 A. S. Schulz and M. Skutella. Randombased scheduling: New approximations and LP lower bounds. In J. Rolim, editor, Randomization and Approximation Techniques in Computer Science, LNCS, Vol. 1269, pages 119–133. Springer, Berlin, 1997.
 A. S. Schulz and M. Skutella. SchedulingLPs bear probabilities: Randomized approximations for minsum criteria. In R. Burkard and G. Woeginger, editors, Algorithms — ESA’97, LNCS, Vol. 1284, pages 416–429. Springer, Berlin, 1997.
 E. D. Wikum, D. C. Llewellyn, and G. L. Nemhauser. Onemachine generalized precedence constrained scheduling problems. Operations Research Letters, 16:87–89, 1994. CrossRef
 L. A. Wolsey, August 1985. Invited Talk at the 12th International Symposium on Mathematical Programming, MIT, Cambridge.
 Title
 Approximation Bounds for a General Class of Precedence Constrained Parallel Machine Scheduling Problems
 Book Title
 Integer Programming and Combinatorial Optimization
 Book Subtitle
 6th International IPCO Conference Houston, Texas, June 22–24, 1998 Proceedings
 Pages
 pp 367382
 Copyright
 1998
 DOI
 10.1007/3540693467_28
 Print ISBN
 9783540645900
 Online ISBN
 9783540693468
 Series Title
 Lecture Notes in Computer Science
 Series Volume
 1412
 Series ISSN
 03029743
 Publisher
 Springer Berlin Heidelberg
 Copyright Holder
 SpringerVerlag Berlin Heidelberg
 Additional Links
 Topics
 Industry Sectors
 eBook Packages
 Editors

 Robert E. Bixby ^{(4)}
 E. Andrew Boyd ^{(5)}
 Roger Z. RíosMercado ^{(6)}
 Editor Affiliations

 4. Department of Computational and Applied Mathematics, Rice University
 5. PROS Strategic Solutions
 6. Department of Industrial, Engineering, Texas A&M University
 Authors

 Alix Munier ^{(7)}
 Maurice Queyranne ^{(10)} ^{(8)}
 Andreas S. Schulz ^{(9)}
 Author Affiliations

 7. Laboratoire LIP6, Université Pierre et Marie Curie, 4 place Jussieu, 75 252, Paris, cedex 05, France
 10. Università di Bologna — Sede di Rimini, via Angherà 22, 47037, Rimini, Italy
 8. Faculty of Commerce and Business Administration, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2
 9. Fachbereich Mathematik, MA 61, Technische Universität Berlin, Straße des 17. Juni 136, 10623, Berlin, Germany
Continue reading...
To view the rest of this content please follow the download PDF link above.