[1]

Balińska, K. T., Quintas, L. V., and Szymansky, J. Random recursive forests. Preprint, August 1991.

[2]

Bender, E. A. Central and local limit theorems applied to asymptotic enumeration.

*Journal of Combinatorial Theory 15* (1973), 91–111.

Google Scholar [3]

Bergeron, F., Labelle, G., and Leroux, P. Computation of the expected number of leaves in a tree having a given automorphism, and related topics. preliminary version, 1991.

[4]

Burge, W. H. An analysis of a tree sorting method and some properties of a set of trees. In *First USA-JAPAN Computer Conference Proceedings* (October 1972), AFIPS and IPSJ, pp. 372–378.

[5]

Chen, W., and Ni, W. Heap ordered trees. Personal communication, October 1991. Based on Wen-Chun Ni's Master Thesis, National Taiwan University.

[6]

Comtet, L.*Advanced Combinatorics*. Reidel, Dordrecht, 1974.

Google Scholar [7]

Devroye, L. Applications of the theory of records in the study of random trees.

*Acta Informatica 26* (1988), 123–130.

Google Scholar [8]

Evgrafov, M. A.*Analytic Functions*. Dover, New York, 1966.

Google Scholar [9]

Flajolet, P. Random tree models in the analysis of algorithms. In *PERFORMANCE'87* (1988), P.-J. Courtois and G. Latouche, Eds., Elsevier Science Publishers (North Holland), pp. 171–187. (Invited lecture).

[10]

Flajolet, P., Gonnet, G., Puech, C., and Robson, J. M. Analytic variations on quadtrees. *Algorithmica* (1992). 24 pages, to appear.

[11]

Flajolet, P., and Odlyzko, A. M. Singularity analysis of generating functions.

*SIAM Journal on Discrete Mathematics 3*, 2 (1990), 216–240.

Google Scholar [12]

Flajolet, P., and Soria, M. Gaussian limiting distributions for the number of components in combinatorial structures.

*Journal of Combinatorial Theory*, Series A

*53* (1990), 165–182.

Google Scholar [13]

Flajolet, P., and Soria, M. General combinatorial schemas: Gaussian limit distributions and exponential tails. *Discrete Mathematics* (1991). To appear in the Special Issue on *Combinatorics and Algorithms*, A. S. Fraenkel Editor. Available as Research Report 632, LRI, Université Paris-Sud, January 1991. 21 pages.

[14]

Ford, W. B.*Studies on divergent series and summability and the asymptotic developments of functions defined by Maclaurin series*, 3rd ed. Chelsea Publishing Company, New York, 1960.

Google Scholar [15]

Françon, J. Arbres binaires de recherche: Propriétés combinatoires et applications.

*RAIRO Informatique Théorique 10*, 12 (Dec. 1976), 35–50.

Google Scholar [16]

Gastwirth, J. L. A probability model of a pyramid scheme.

*American Statistician 31* (1977), 79–82.

Google Scholar [17]

Gastwirth, J. L., and Bhattacharya, P. K. Two probability models of pyramid or chain letter schemes demonstrating that their promotional claims are unreliable.

*Operations Research 32*, 3 (May–June 1984), 527–536.

Google Scholar [18]

Gonnet, G. H., and Baeza-Yates, R. *Handbook of Algorithms and Data Structures: in Pascal and C*, second ed. Addison-Wesley, 1991.

[19]

Goulden, I. P., and Jackson, D. M.*Combinatorial Enumeration*. John Wiley, New York, 1983.

Google Scholar [20]

Graham, R., Knuth, D., and Patashnik, O. *Concrete Mathematics.* Addison Wesley, 1989.

[21]

Hennequin, P. Combinatorial analysis of quicksort algorithm.

*RAIRO Theoretical Informatics and Applications 23*, 3 (1989), 317–333.

Google Scholar [22]

Joyal, A. Une théorie combinatoire des séries formelles.

*Advances in Mathematics 42*, 1 (1981), 1–82.

Google Scholar [23]

Knuth, D. E. *The Art of Computer Programming*, vol. 1: Fundamental Algorithms. Addison-Wesley, 1968. Second edition, 1973.

[24]

Knuth, D. E. *The Art of Computer Programming*, vol. 3: Sorting and Searching. Addison-Wesley, 1973.

[25]

Knuth, D. E., and Pittel, B. A recurrence related to trees.

*Proceedings of the American Mathematical Society 105*, 2 (Feb. 1989), 335–349.

Google Scholar [26]

Leroux, P., and Viennot, G. X. Combinatorial resolution of systems of differential equations I: Ordinary differential equations. In *Combinatoire Énumérative* (1986), G. Labelle and P. Leroux, Eds., no. 1234 in Lecture Notes in Mathematics, Springer-Verlag, pp. 210–245.

[27]

Leroux, P., and Viennot, X. G. Combinatorial resolution of systems of differential equations. IV. separation of variables.

*Discrete Mathematics 72* (1988), 237–250.

Google Scholar [28]

Louchard, G. Exact and asymptotic distributions in digital and binary search trees.

*RAIRO Theoretical Informatics and Applications 21*, 4 (1987), 479–495.

Google Scholar [29]

Mahmoud, H.*Evolution of Random Search Trees*. John Wiley, New York, 1991. In press.

Google Scholar [30]

Mahmoud, H. M. Distances in random plane-oriented recursive trees, 1991. Preprint. To appear in the *Journal of Applied and Computational Mathematics*, special issue on asymptotic analysis in discrete mathematics.

[31]

Mahmoud, H. M., Smythe, R. T., and Szymański, J. On the structure of random plane-oriented recursive trees and their branches, 1991. Preprint.

[32]

Meir, A., and Moon, J. W. On the altitude of nodes in random trees.

*Canadian Journal of Mathematics 30* (1978), 997–1015.

Google Scholar [33]

Meir, A., and Moon, J. W. Recursive trees with no nodes of out-degree one.

*Congressus Numerantium 66* (1988), 49–62.

Google Scholar [34]

Najock, D., and Heyde, C. C. On the number of terminal vertices in certain random trees with an application to stemma constructions in philology.

*Journal of Applied Probability 19* (1982), 675–680.

Google Scholar [35]

Stanley, R. P. *Enumerative Combinatorics*, vol. I. Wadsworth & Brooks/Cole, 1986.

[36]

Szymański, J. On a non-uniform random recursive tree. In *Random Graphs '85*, M. Karoński and Z. Palka, Eds., vol. 33 of *Annals of Discrete Mathematics*. North-Holland, 1987, pp. 297–306.

[37]

Titchmarsh, E. C. *The Theory of Functions*, second ed. Oxford University Press, 1939.

[38]

Vitter, J. S., and Flajolet, P. Analysis of algorithms and data structures. In *Handbook of Theoretical Computer Science*, J. van Leeuwen, Ed., vol. A: Algorithms and Complexity. North Holland, 1990, ch. 9, pp. 431–524.

[39]

Vuillemin, J. A unifying look at data structures.

*Communications of the ACM 23*, 4 (Apr. 1980), 229–239.

Google Scholar [40]

Wilf, H. S. *Generatingfunctionology*. Academic Press, 1990.

[41]

Wilson, R. Functions with dominant singularities of the generalized algebraic-logarithmic type (II): On the order of the Hadamard product.

*Proceedings of the London Mathematical Society*, Series 2

*43*, 2190 (1937), 417–438.

Google Scholar