Single exponential path finding in semialgebraic sets Part I: The case of a regular bounded hypersurface

  • Joos Heintz
  • Marie-Francoise Roy
  • Pablo Solernó
Submitted Contributions Computational Algebra And Geometry

DOI: 10.1007/3-540-54195-0_50

Part of the Lecture Notes in Computer Science book series (LNCS, volume 508)
Cite this paper as:
Heintz J., Roy MF., Solernó P. (1991) Single exponential path finding in semialgebraic sets Part I: The case of a regular bounded hypersurface. In: Sakata S. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1990. Lecture Notes in Computer Science, vol 508. Springer, Berlin, Heidelberg

Abstract

Let V be a bounded semialgebraic hypersurface defined by a regular polynomial equation and let x1, x2 be two points of V. Assume that x1, x2 are given by a boolean combination of polynomial inequalities. We describe an algorithm which decides in single exponential sequential time and polynomial parallel time whether x1 and x2 are contained in the same semialgebraically connected component of V. If they do, the algorithm constructs a continuous semialgebraic path of V connecting x1 and x2. By the way the algorithm constructs a roadmap of V. In particular we obtain that the number of semialgebraically connected components of V is computable within the mentioned time bounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Joos Heintz
    • 2
    • 3
  • Marie-Francoise Roy
    • 1
  • Pablo Solernó
    • 2
    • 3
  1. 1.IRMAR. Université de Rennes IRennes CedexFrance
  2. 2.Working Group Noaï Fitchas. Instituto Argentino de Matemática CONICETBuenos AiresArgentina
  3. 3.Facultad de Ciencias Exactas y Naturales. Dpto. de Matemática (Univ. de Buenos Aires)Ciudad UniversitariaArgentina

Personalised recommendations