Discovering Numeric Association Rules via Evolutionary Algorithm

  • Jacinto Mata
  • José-Luis Alvarez
  • José-Cristobal Riquelme
Conference paper

DOI: 10.1007/3-540-47887-6_5

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2336)
Cite this paper as:
Mata J., Alvarez JL., Riquelme JC. (2002) Discovering Numeric Association Rules via Evolutionary Algorithm. In: Chen MS., Yu P.S., Liu B. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2002. Lecture Notes in Computer Science, vol 2336. Springer, Berlin, Heidelberg

Abstract

Association rules are one of the most used tools to discover relationships among attributes in a database. Nowadays, there are many efficient techniques to obtain these rules, although most of them require that the values of the attributes be discrete. To solve this problem, these techniques discretize the numeric attributes, but this implies a loss of information. In a general way, these techniques work in two phases: in the first one they try to find the sets of attributes that are, with a determined frequency, within the database (frequent itemsets), and in the second one, they extract the association rules departing from these sets. In this paper we present a technique to find the frequent itemsets in numeric databases without needing to discretize the attributes. We use an evolutionary algorithm to find the intervals of each attribute that conforms a frequent itemset. The evaluation function itself will be the one that decide the amplitude of these intervals. Finally, we evaluate the tool with synthetic and real databases to check the efficiency of our algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jacinto Mata
    • 1
  • José-Luis Alvarez
    • 1
  • José-Cristobal Riquelme
    • 2
  1. 1.Dpto. Ingeniería ElectrónicaSistemas Informáticos y Automática Universidad de HuelvaSpain
  2. 2.Dpto. Lenguajes y Sistemas InformáticosUniversidad de SevillaSpain

Personalised recommendations