Reconstruction of Binary Matrices from Absorbed Projections

  • E. Balogh
  • A. Kuba
  • A. Del Lungo
  • M. Nivat
Conference paper

DOI: 10.1007/3-540-45986-3_35

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)
Cite this paper as:
Balogh E., Kuba A., Del Lungo A., Nivat M. (2002) Reconstruction of Binary Matrices from Absorbed Projections. In: Braquelaire A., Lachaud JO., Vialard A. (eds) Discrete Geometry for Computer Imagery. DGCI 2002. Lecture Notes in Computer Science, vol 2301. Springer, Berlin, Heidelberg

Abstract

A generalization of the classical discrete tomography problem is considered: Reconstruct binary matrices from their absorbed row and column sums. We show that this reconstruction problem can be linked to a 3SAT problem if the absorption is characterized with the constant \( \beta = ln\left( {\tfrac{{1 + \sqrt 5 }} {2}} \right) \).

Keywords

discrete tomography reconstruction absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • E. Balogh
    • 1
  • A. Kuba
    • 1
  • A. Del Lungo
    • 2
  • M. Nivat
    • 3
  1. 1.Department of Applied InformaticsUniversity of SzegedSzegedHungary
  2. 2.Department of MathematicsUniversity of SienaSienaItaly
  3. 3.Laboratoire d’Informatique Algorithmique: Fondements et ApplicationsUniversité ParisParisFrance

Personalised recommendations