Logical Relations for Monadic Types

Purchase on Springer.com

$29.95 / €24.95 / £19.95*

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Logical relations and their generalizations are a fundamental tool in proving properties of lambda-calculi, e.g., yielding sound principles for observational equivalence. We propose a natural notion of logical relations able to deal with the monadic types of Moggi’s computational lambda-calculus. The treatment is categorical, and is based on notions of subsconing and distributivity laws for monads. Our approach has a number of interesting applications, including cases for lambda-calculi with non-determinism (where being in logical relation means being bisimilar), dynamic name creation, and probabilistic systems.