Chapter

Knowledge Discovery and Data Mining. Current Issues and New Applications

Volume 1805 of the series Lecture Notes in Computer Science pp 173-176

Date:

Predictive Adaptive Resonance Theory and Knowledge Discovery in Databases

  • Ah-Hwee TanAffiliated withKent Ridge Digital Labs
  • , Hui-Shin Vivien SoonAffiliated withNgee Ann Polytechnic

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This paper investigates the scalability of predictive Adaptive Resonance Theory (ART) networks for knowledge discovery in very large databases. Although predictive ART performs fast and incremental learning, the number of recognition categories or rules that it creates during learning may become substantially large and cause the learning speed to slow down. To tackle this problem, we introduce an on-line algorithm for evaluating and pruning categories during learning. Benchmark experiments on a large scale data set show that on-line pruning has been effective in reducing the number of the recognition categories and the time for convergence. Interestingly, the pruned networks also produce better predictive performance.