Text Mining at Detail Level Using Conceptual Graphs

  • Manuel Montes-y-Gómez
  • Alexander Gelbukh
  • Aurelio López-López
Conference paper

DOI: 10.1007/3-540-45483-7_10

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2393)
Cite this paper as:
Montes-y-Gómez M., Gelbukh A., López-López A. (2002) Text Mining at Detail Level Using Conceptual Graphs. In: Priss U., Corbett D., Angelova G. (eds) Conceptual Structures: Integration and Interfaces. ICCS-ConceptStruct 2002. Lecture Notes in Computer Science, vol 2393. Springer, Berlin, Heidelberg

Abstract

Text mining is defined as knowledge discovery in large text collections. It detects interesting patterns such as clusters, associations, deviations, similarities, and differences in sets of texts. Current text mining methods use simplistic representations of text contents, such as keyword vectors, which imply serious limitations on the kind and meaningfulness of possible discoveries. We show how to do some typical mining tasks using conceptual graphs as formal but meaningful representation of texts. Our methods involve qualitative and quantitative comparison of conceptual graphs, conceptual clustering, building a conceptual hierarchy, and application of data mining techniques to this hierarchy in order to detect interesting associations and deviations. Our experiments show that, despite widespread misbelief, detailed meaningful mining with conceptual graphs is computationally affordable.

Keywords

text mining conceptual graphs conceptual clustering association discovery deviation detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Manuel Montes-y-Gómez
    • 1
  • Alexander Gelbukh
    • 2
  • Aurelio López-López
    • 1
  1. 1.Óptica y Electrónica (INAOE)Instituto Nacional de AstrofísicaMexico
  2. 2.Centro de Investigación en Computación (CIC-IPN)Mexico

Personalised recommendations