Boosting and Classification of Electronic Nose Data

  • Francesco Masulli
  • Matteo Pardo
  • Giorgio Sberveglieri
  • Giorgio Valentini
Conference paper

DOI: 10.1007/3-540-45428-4_26

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2364)
Cite this paper as:
Masulli F., Pardo M., Sberveglieri G., Valentini G. (2002) Boosting and Classification of Electronic Nose Data. In: Roli F., Kittler J. (eds) Multiple Classifier Systems. MCS 2002. Lecture Notes in Computer Science, vol 2364. Springer, Berlin, Heidelberg

Abstract

Boosting methods are known to improve generalization performances of learning algorithms reducing both bias and variance or enlarging the margin of the resulting multi-classifier system. In this contribution we applied Adaboost to the discrimination of different types of coffee using data produced with an Electronic Nose. Two groups of coffees (blends and monovarieties), consisting of seven classes each, have been analyzed. The boosted ensemble of Multi-Layer Perceptrons was able to halve the classification error for the blends data and to diminish it from 21% to 18% for the more difficult monovarieties data set.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Francesco Masulli
    • 1
    • 2
  • Matteo Pardo
    • 3
  • Giorgio Sberveglieri
    • 3
  • Giorgio Valentini
    • 1
    • 4
  1. 1.INFMIstituto Nazionale per la Fisica della MateriaGenovaItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItaly
  3. 3.INFM and Dipartimento di Chimica e FisicaBresciaItaly
  4. 4.DISI - Dipartimento di Informatica e Scienze dell’InformazioneUniversità di GenovaGenovaItaly

Personalised recommendations