Analysis of the GHS Weil Descent Attack on the ECDLP over Characteristic Two Finite Fields of Composite Degree

(Extended Abstract)
  • Markus Maurer
  • Alfred Menezes
  • Edlyn Teske
Conference paper

DOI: 10.1007/3-540-45311-3_19

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2247)
Cite this paper as:
Maurer M., Menezes A., Teske E. (2001) Analysis of the GHS Weil Descent Attack on the ECDLP over Characteristic Two Finite Fields of Composite Degree. In: Rangan C.P., Ding C. (eds) Progress in Cryptology — INDOCRYPT 2001. INDOCRYPT 2001. Lecture Notes in Computer Science, vol 2247. Springer, Berlin, Heidelberg

Abstract

We analyze the Gaudry-Hess-Smart (GHS) Weil descent attack on the elliptic curve discrete logarithm problem (ECDLP)for elliptic curves defined over characteristic two finite fields of composite extension degree. For each such field F2N, N ∈ [160, 600], we identify elliptic curve parameters such that (i)there should exist a cryptographically interesting elliptic curve E over F2N with these parameters; and (ii)the GHS attack is more efficient for solving the ECDLP in E(F2N)than for any other cryptographically interesting elliptic curve over F2N.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Markus Maurer
    • 1
  • Alfred Menezes
    • 1
  • Edlyn Teske
    • 1
  1. 1.Dept. of C&OUniversity of WaterlooCanada

Personalised recommendations