Testing Acyclicity of Directed Graphs in Sublinear Time
 Michael A. Bender,
 Dana Ron
 … show all 2 hide
Purchase on Springer.com
$29.95 / €24.95 / £19.95*
* Final gross prices may vary according to local VAT.
Abstract
This paper initiates the study of testing properties of directed graphs. In particular, the paper considers the most basic property of directed graphs  acyclicity. Because the choice of representation affects the choice of algorithm, the two main representations of graphs are studied. For the adjacency matrix representation, most appropriate for dense graphs, a testing algorithm is developed that requires query and time complexity of O(l/∈^{2}), where ∈ is a distance parameter independent of the size of the graph. The algorithm, which can probe the adjacency matrix of the graph, accepts every graph that is acyclic, and rejects, with probability at least 2/3, every graph whose adjacency matrix should be modified in at least e fraction of its entries so that it become acyclic. For the incidence list representation, most appropriate for sparse graphs, an Ω(V 1/3) lower bound is proved on the number of queries and the time required for testing, where V is the set of vertices in the graph. These results stand in contrast to what is known about testing acyclicity in undirected graphs.
 N. Alon, E. Fischer, M. Krivelevich, and M Szegedy. Efficient testing of large graphs. In Proceedings of the Fortieth Annual Symposium on Foundations of Computer Science, pages 656–666, 1999.
 N. Alon, M. Krivelevich, I. Newman, and M Szegedy. Regular languages are testable with a constant number of queries. In Proceedings of the Fortieth Annual Symposium on Foundations of Computer Science, pages 645–655, 1999.
 S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the assignment problem with applications to dense graph arrangement problems. In 37th Annual Symposium on Foundations of Computer Science, pages 21–30. IEEE, 14–16 October 1996.
 S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and intractability of approximation problems. In Proceedings of the ThirtyThird Annual Symposium on Foundations of Computer Science, pages 14–23, 1992.
 S. Arora and S. Safra. Probabilistic checkable proofs: A new characterization of NP. In Proceedings of the ThirtyThird Annual Symposium on Foundations of Computer Science, pages 1–13, 1992.
 L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polylogarithmic time. In Proceedings of the TwentyThird Annual ACM Symposium on Theory of Computing, pages 21–31, 1991.
 L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has twoprover interactive protocols. Computational Complexity, 1(1):3–40, 1991. CrossRef
 M. Bender and D. Ron. Testing acyclicity of directed graphs in sublinear time. Full version of this paper. Available from http://www.eng.tau.ac.il/danar, 2000.
 B. Berger and P. W. Shor. Tight bounds for the maximum acyclic subgraph problem. Journal of Algorithms, 25(1):1–18, October 1997.
 M. Blum, M. Luby, and R. Rubinfeld. Selftesting/correcting with applications to numerical problems. Journal of the Association for Computing Machinery, 47:549–595, 1993.
 Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Improved testing algorithms for monotonocity. In Proceedings of RANDOM99, 1999.
 F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spotcheckers. In Proceedings of the ThirtySecond Annual ACM Symposium on the Theory of Computing, pages 259–268, 1998.
 G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica, 20, 1998.
 U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is almost NPcomplete. Journal of the Association for Computing Machinery, 43(2):268–292, 1996.
 A. Frieze and R. Kannan. Quick approximations of matrices. An extended abstract of some of this work appeared in FOCS96 under the title: The Regularity Lemma and approximation schemes for dense problems, 1997.
 P. B. Gibbons and Y. Matias. New samplingbased summary statistics for improving approximate query answers. SIGMOD Record: Proc. ACM SIGMOD Int. Conf. Management of Data, 27(2):331–342, 2–4 June 1998.
 P. B. Gibbons and Y. Matias. Synopsis data structures for massive data sets. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science: Special Issue on External Memory Algorithms and Visualization, A, 1999. to appear.
 M. Goemans and D. Williamson. Primaldual approximation algorithms for feedback problems in planar graphs. Combinatorica, 18, 1998.
 O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monotonicity. To appear in Combinatorica. A preliminary (and weaker) version of this work appeared in FOCS98, 1999.
 O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. Journal of the Association for Computing Machinery, 45(4):653–750, 1998. An extended abstract appeared in FOCS96.
 O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proceedings of the ThirtyFirst Annual ACM Symposium on the Theory of Computing, pages 406–415, 1997.
 O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs. In Proceedings of the ThirtySecond Annual ACM Symposium on the Theory of Computing, 1998. To appear in Combinatorica.
 R. Hassin and S. Rubinstein. Approximations for the maximum acyclic subgraph problem. Information Processing Letters, 51(3):133–140, August 1994.
 D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the Association for Computing Machinery, 34(1):144–162, January 1987.
 D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for machine scheduling on uniform processors: Using the dual approximation approach. SI AM Journal on Computing, 17(3):539–551, 1988. CrossRef
 V. Kann. On the Approximability of NPComplete Optimization Problems. PhD thesis, Department of Numberical Analysis and Computer Science, Royal Institute of Technology, Stockholm, 1992.
 R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103, New York, 1972. Plenum Press.
 M. Kearns and D. Ron. Testing problems with sublearning sample complexity. In Proceedings of the Eleventh Annual ACM Conference on Computational Learning Theory, pages 268–277, 1998.
 C. Papadimitriou and M. Yannakakis. Optimization, approximization and complexity classes. Journal of Computer and System Sciences, 43:425–440, 1991. CrossRef
 M. Parnas and D. Ron. Testing the diameter of graphs. In Proceedings of Random99, pages 85–96, 1999.
 R. Rubinfeld. Robust functional equations and their applications to program testing. In Proceedings of the ThirtyFifth Annual Symposium on Foundations of Computer Science, 1994.
 R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996. CrossRef
 P. D. Seymour. Packing directed circuits fractionally. Combinatorica, 15, 1995.
 Title
 Testing Acyclicity of Directed Graphs in Sublinear Time
 Book Title
 Automata, Languages and Programming
 Book Subtitle
 27th International Colloquium, ICALP 2000 Geneva, Switzerland, July 9–15, 2000 Proceedings
 Pages
 pp 809820
 Copyright
 2000
 DOI
 10.1007/354045022X_68
 Print ISBN
 9783540677154
 Online ISBN
 9783540450221
 Series Title
 Lecture Notes in Computer Science
 Series Volume
 1853
 Series ISSN
 03029743
 Publisher
 Springer Berlin Heidelberg
 Copyright Holder
 SpringerVerlag Berlin Heidelberg
 Additional Links
 Topics
 Industry Sectors
 eBook Packages
 Editors

 Ugo Montanari ^{(4)}
 José D. P. Rolim ^{(5)}
 Emo Welzl ^{(6)}
 Editor Affiliations

 4. Department of Computer Sciences, University of Pisa
 5. Center for Computer Sciences, University of Geneva
 6. Department of Computer Sciences, ETH Zurich
 Authors

 Michael A. Bender ^{(7)}
 Dana Ron ^{(8)}
 Author Affiliations

 7. Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY, 117944400, USA
 8. Department of Electrical Engineering  Systems, Tel Aviv University, Ramat Aviv, Israel
Continue reading...
To view the rest of this content please follow the download PDF link above.