1.
N. Alon, E. Fischer, M. Krivelevich, and M Szegedy. Efficient testing of large graphs. In Proceedings of the Fortieth Annual Symposium on Foundations of Computer Science, pages 656–666, 1999.
2.
N. Alon, M. Krivelevich, I. Newman, and M Szegedy. Regular languages are testable with a constant number of queries. In Proceedings of the Fortieth Annual Symposium on Foundations of Computer Science, pages 645–655, 1999.
3.
S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the assignment problem with applications to dense graph arrangement problems. In 37th Annual Symposium on Foundations of Computer Science, pages 21–30. IEEE, 14–16 October 1996.
4.
S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and intractability of approximation problems. In Proceedings of the Thirty-Third Annual Symposium on Foundations of Computer Science, pages 14–23, 1992.
5.
S. Arora and S. Safra. Probabilistic checkable proofs: A new characterization of NP. In Proceedings of the Thirty-Third Annual Symposium on Foundations of Computer Science, pages 1–13, 1992.
6.
L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polylogarithmic time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, pages 21–31, 1991.
7.
L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover interactive protocols.
Computational Complexity, 1(1):3–40, 1991.
MATHCrossRefMathSciNet8.
M. Bender and D. Ron. Testing acyclicity of directed graphs in sublinear time. Full version of this paper. Available from
http://www.eng.tau.ac.il/danar, 2000.
9.
B. Berger and P. W. Shor. Tight bounds for the maximum acyclic subgraph problem. Journal of Algorithms, 25(1):1–18, October 1997.
10.
M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems.
Journal of the Association for Computing Machinery, 47:549–595, 1993.
MATHMathSciNet11.
Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Improved testing algorithms for monotonocity. In Proceedings of RANDOM99, 1999.
12.
F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spotcheckers. In Proceedings of the Thirty-Second Annual ACM Symposium on the Theory of Computing, pages 259–268, 1998.
13.
G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica, 20, 1998.
14.
U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is almost NP-complete.
Journal of the Association for Computing Machinery, 43(2):268–292, 1996.
MATH15.
A. Frieze and R. Kannan. Quick approximations of matrices. An extended abstract of some of this work appeared in FOCS96 under the title: The Regularity Lemma and approximation schemes for dense problems, 1997.
16.
P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving approximate query answers. SIGMOD Record: Proc. ACM SIGMOD Int. Conf. Management of Data, 27(2):331–342, 2–4 June 1998.
17.
P. B. Gibbons and Y. Matias. Synopsis data structures for massive data sets. DI-MACS: Series in Discrete Mathematics and Theoretical Computer Science: Special Issue on External Memory Algorithms and Visualization, A, 1999. to appear.
18.
M. Goemans and D. Williamson. Primal-dual approximation algorithms for feedback problems in planar graphs. Combinatorica, 18, 1998.
19.
O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monotonicity. To appear in Combinatorica. A preliminary (and weaker) version of this work appeared in FOCS98, 1999.
20.
O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation.
Journal of the Association for Computing Machinery, 45(4):653–750, 1998. An extended abstract appeared in FOCS96.
MATHMathSciNet21.
O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proceedings of the Thirty-First Annual ACM Symposium on the Theory of Computing, pages 406–415, 1997.
22.
O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs. In Proceedings of the Thirty-Second Annual ACM Symposium on the Theory of Computing, 1998. To appear in Combinatorica.
23.
R. Hassin and S. Rubinstein. Approximations for the maximum acyclic subgraph problem. Information Processing Letters, 51(3):133–140, August 1994.
24.
D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the Association for Computing Machinery, 34(1):144–162, January 1987.
25.
D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for machine scheduling on uniform processors: Using the dual approximation approach.
SI AM Journal on Computing, 17(3):539–551, 1988.
MATHCrossRefMathSciNet26.
V. Kann. On the Approximability of NP-Complete Optimization Problems. PhD thesis, Department of Numberical Analysis and Computer Science, Royal Institute of Technology, Stockholm, 1992.
27.
R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103, New York, 1972. Plenum Press.
28.
M. Kearns and D. Ron. Testing problems with sub-learning sample complexity. In Proceedings of the Eleventh Annual ACM Conference on Computational Learning Theory, pages 268–277, 1998.
29.
C. Papadimitriou and M. Yannakakis. Optimization, approximization and complexity classes.
Journal of Computer and System Sciences, 43:425–440, 1991.
MATHCrossRefMathSciNet30.
M. Parnas and D. Ron. Testing the diameter of graphs. In Proceedings of Random99, pages 85–96, 1999.
31.
R. Rubinfeld. Robust functional equations and their applications to program testing. In Proceedings of the Thirty-Fifth Annual Symposium on Foundations of Computer Science, 1994.
32.
R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to program testing.
SIAM Journal on Computing, 25(2):252–271, 1996.
MATHCrossRefMathSciNet33.
P. D. Seymour. Packing directed circuits fractionally. Combinatorica, 15, 1995.