Multiple Classifier Systems

Volume 1857 of the series Lecture Notes in Computer Science pp 1-15


Ensemble Methods in Machine Learning

  • Thomas G. DietterichAffiliated withOregon State University

* Final gross prices may vary according to local VAT.

Get Access


Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging, and boosting. This paper reviews these methods and explains why ensembles can often perform better than any single classifier. Some previous studies comparing ensemble methods are reviewed, and some new experiments are presented to uncover the reasons that Adaboost does not overfit rapidly.