Date: 25 Apr 2001

Engineered communications for microbial robotics

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Multicellular organisms create complex patterned structures from identical, unreliable components. Learning how to engineer such robust behavior is important to both an improved understanding of computer science and to a better understanding of the natural developmental process. Earlier work by our colleagues and ourselves on amorphous computing demonstrates in simulation how one might build complex patterned behavior in this way. This work reports on our first efforts to engineer microbial cells to exhibit this kind of multicellular pattern directed behavior.

We describe a specific natural system, the Lux operon of Vibrio fischeri, which exhibits density dependent behavior using a well characterized set of genetic components. We have isolated, sequenced, and used these components to engineer intercellular communication mechanisms between living bacterial cells.

In combination with digitally controlled intracellular genetic circuits, we believe this work allows us to begin the more difficult process of using these communication mechanisms to perform directed engineering of multicellular structures, using techniques such as chemical diffusion dependent behavior. These same techniques form an essential part of our toolkit for engineering with life, and are widely applicable in the field of microbial robotics, with potential applications in medicine, environmental monitoring and control, engineered crop cultivation, and molecular scale fabrication.