Date: 24 Jun 2003

A Discussion of Indices for the Evaluation of Fuzzy Associations in Relational Databases

Download Book (22,908 KB) As a courtesy to our readers the eBook is provided DRM-free. However, please note that Springer uses effective methods and state-of-the art technology to detect, stop, and prosecute illegal sharing to safeguard our authors’ interests.
Download Chapter (146 KB)

Abstract

This paper investigates techniques to identify and evaluate associations in a relational database that are expressed by fuzzy if-then rules. Extensions of the classical confidence measure based on the α-cut decompositions of the fuzzy sets are proposed to address the problems associated with the normalization in scalar-valued generalizations of confidence. An analysis by α-level differentiates strongly and weakly supported associations and identifies robustness in an association. In addition, a method is proposed to assess the validity of a fuzzy association based on the ratio of examples to counterexamples.