Skip to main content

Sulfur Cycling and Methane Oxidation

  • Chapter
Book cover Marine Geochemistry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R.C., and Rude, P.D., 1988. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochimica et Cosmochimica Acta, 52: 751–765.

    Google Scholar 

  • Amend, J.P., Edwards, K.J., and Lyons, T.W. (eds), 2004. Sulfur Biogeochemistry — Past and Present. Geological Society of America Special Paper 379, Boulder, Colorado, 205 p.

    Google Scholar 

  • Alperin, M.J., and Reeburgh, W.S., 1988. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochemical Cycles, 2: 279–288.

    Google Scholar 

  • Bach W., and Edwards, K.J., 2003. Iron and sulfide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochimica et Cosmochimica Acta, 67: 3871–3887.

    Google Scholar 

  • Bak, F., and Pfennig, N., 1987. Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Archives of Microbiology, 147: 184–189.

    Google Scholar 

  • Ballbjerg, V., Mouritsen, K.N., and Finster, K., 1998. Diel cycles of sulfate reduction rates in sediments of a Zostera marina bed (Denmark). Aquatic Microbial Ecology, 15: 97–102.

    Google Scholar 

  • Barnes, R.O., and Goldberg, E.D., 1976. Methane production and consumption in anoxic marine sediments. Geology, 4: 297–300.

    Google Scholar 

  • Berg, P., Rysgaard-Petersen, N. and Rysgaard, S., 1998. Interpretation of measured concentration profiles in the sediment porewater. Limnology Oceanography, 43: 1500–1510.

    Google Scholar 

  • Berner, R.A., 1969. Migration of iron and sulfur within anaerobic sediments during early diagenesis. American Journal of Science, 267: 19–42.

    Google Scholar 

  • Berner, R.A., 1970. Sedimentary pyrite formation. American Journal of Science, 268: 1–23.

    Google Scholar 

  • Berner, R.A., 1980. Early diagenesis: A theoretical approach. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Berner, R.A., 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology, 51: 359–365.

    Google Scholar 

  • Berner, R.A., 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. American Journal of Science, 282: 451–473.

    Google Scholar 

  • Berner, R.A., 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48: 605–615.

    Google Scholar 

  • Berner, R.A., 1989. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time. Global and Planetary Change 75: 97–122.

    Google Scholar 

  • Bishop, J.K.B., 1988. The barite-opal-organic carbon association in oceanic particulate matter. Nature, 332: 341–343.

    Google Scholar 

  • Boetius, A., and Suess, E., 2004. Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chemical Geology, 205: 291–310.

    Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623–626.

    Google Scholar 

  • Böttcher, M.E. and Lepland, A., 2000. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: Evidence from stable isotopes and pyrite textures. Journal of Marine Systems, 25: 299–312.

    Google Scholar 

  • Böttcher, M.E., and Thamdrup, B., 2001. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochimica et Cosmochimica Acta 65: 1573–1581.

    Google Scholar 

  • Borowski, W.S., Paull, C.K., and Ussler III, W., 1996. Marine pore-water sulfate profiles indicate in-situ methane flux from underlying gas hydrate. Geology, 24: 655–658.

    Google Scholar 

  • Bowen, H.J.M., 1979. Environmental chemistry of the elements. Academic Press, London.

    Google Scholar 

  • Bowman, J., 2000. The Methanotrophs-The families Methylococcaceae and Methylocystaceae. In: Dworkin, M., Balows, A., Trüper, H.G., Harder, W., and Schleifer, K.-H. (eds), The Prokaryotes, 3rd Ed. Springer, New York.

    Google Scholar 

  • Bréhéret, J.-G. and Brumsack, H.-J., 2000. Barite concretions as evidence of pauses in sedimentation in the Marnes Bleues Formation of the Vocontian Basin (SE France). Sedimentary Geology, 130: 205–228.

    Google Scholar 

  • Brüchert, V., and Pratt, L.M., 1996. Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA. Geochimica et Cosmochimica Acta 60: 2325–2332.

    Google Scholar 

  • Brumsack, H.-J., 1986. The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California. In: Shackelton, N.J. and Summerhayes, C.P. (eds) North Atlantic paleoceanography. Geological Society Special Publication 21, London, pp. 447–462.

    Google Scholar 

  • Burdige, D.J., 1993. The biogeochemistry of manganese and iron reduction in marine sediments. Earth Science Reviews, 35: 249–284.

    Google Scholar 

  • Canfield, D.E., 1989. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Research, 36: 121–138.

    Google Scholar 

  • Canfield, D.E., 1991. Sulfate reduction in deep-sea sediments. American Journal of Science, 291: 177–188.

    Google Scholar 

  • Canfield, D.E., 1993. Organic matter oxidation in marine sediments. In: Wollast, R., Mackenzie, F.T., and Chou, L. (eds), Biogeochemical cycles and global change. Springer, Berlin, pp. 333–363.

    Google Scholar 

  • Canfield, D.E., and Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382: 127–132.

    Google Scholar 

  • Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., and Berner, R.A., 1986. The use of chromium reduction in the analyses of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54: 149–155.

    Google Scholar 

  • Canfield, D.E., Raiswell, R. and Bottrell, S., 1992. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci., 292: 659–683.

    Google Scholar 

  • Canfield, D.E., Thamdrup, B. and Hansen, J.W., 1993. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57: 3867–3883.

    Google Scholar 

  • Canfield, D.E., Kristensen, E., and Thamdrup, B., 2005. Aquatic Geomicrobiology. Elsevier, San Diego, California.

    Google Scholar 

  • Cecile, M.P., Shakur, M.A. and Krouse, H.R., 1983. The isotopic composition of western Canadian barites and the possible derivation of oceanic sulfate δ34S and δ18O age curves. Canadian Journal of Earth Sciences, 20: 1528–1535.

    Google Scholar 

  • Chanton, J.P., 1985. Sulfur mass balance and isotopic fractionation in an anoxic marine sediment. Ph.D. Thesis, University of North Carolina, Chapel Hill, USA.

    Google Scholar 

  • Christensen, J.P., 1989. Sulphate reduction and carbon oxidation rates in continental shelf sediments, an examination of offshelf carbon transport. Continental Shelf Research, 9: 223–246.

    Google Scholar 

  • Cline, J.D. and Richards, F.A., 1969. Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH. Environment Sci. Technology, 3: 838–843.

    Google Scholar 

  • Crill, P.M., and Martens, C.S., 1983. Spatial and temporal fluctuations of methane production in anoxic coastal marine sediments. Limnology and Oceanography, 28: 1117–1130.

    Google Scholar 

  • Crill, P.M., and Martens, C.S., 1986. Methane production from bicarbonate and acetate in an anoxic marine sediment. Geochimica et Cosmochimica Acta, 50: 2089–2097.

    Google Scholar 

  • Crill, P.M., and Martens, C.S., 1987. Biogeochemical cycling in an organic-rich coastal marine basin. 6. Temporal and spatial variations in sulfate reduction rates. Geochimica et Cosmochimica Acta, 51: 1175–1186.

    Google Scholar 

  • Dehairs, F., Stoobants, N. and Goeyens, L., 1991. Suspended barite as a tracer of biological activity in the Southern Ocean. Marine Chemistry, 35: 399–410.

    Google Scholar 

  • Devol, A.H. and Ahmend, S.I., 1981. Are high rates of sulphate reduction associated with anaerobic oxidation of methane? Nature, 291: 407–408.

    Google Scholar 

  • Devol, A.H., Anderson, J.J., Kuivila, K., and Murray, J.W., 1984. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet. Geochimica et Cosmochimica Acta, 48: 993–1004.

    Google Scholar 

  • D’Hondt, S., Jørgensen, B.B., Miller, J., et al., 2003. Proceedings of the ODP, Initial Reports, 201 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, Texas 77845-9547, USA.

    Google Scholar 

  • D’Hondt, S., Jørgensen, B.B., Miller, D.J., et al., 2004. Distributions of microbial activities in deep subsea-floor sediments. Science, 306: 2216–2221.

    Google Scholar 

  • Dickens, G.R., 2001. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta, 65: 529–543.

    Google Scholar 

  • Dickens, G.R., Schroeder, D., Hinrichs, K.-U., and the Leg 201 Scientific Party, 2003. The pressure core sampler (PCS) on ODP Leg 201: general operations and gas release. In: D’Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al. (eds), Proceedings of the ODP, Initial Reports, 201, 1–22 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA.

    Google Scholar 

  • Dos Santos Afonso, M. and Stumm, W., 1992. The reductive dissolution of iron (III) (hydr) oxides by hydrogen sulfide. Langmuir, 8: 1671–1676.

    Google Scholar 

  • Dymond, J., Suess, E. and Lyle, M., 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7: 163–181.

    Google Scholar 

  • Edenborn, H.M., Silverberg, N., Mucci, A., and Sundby, B., 1987. Sulfate reduction in deep coastal marine sediments. Marine Chemistry, 21: 329–345.

    Google Scholar 

  • Ehrlich, H.L., 1996. Geomicrobiology. Marcel Dekker, NY, 719 pp.

    Google Scholar 

  • Elderfield, H., and Schultz, A., 1996. Midocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annual Review of Earth and Planetary Science, 24: 191–224.

    Google Scholar 

  • Elvert, M., Suess, E., Greinert, J., and Whiticar, M.J., 2000. Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Organic Geochemistry, 31: 1175–1187.

    Google Scholar 

  • Ferdelman, T. G., Fossing, H., Neumann, K., and Schulz, H.D., 1999. Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15 degrees 38′S and 27 degrees 57′S (Angola and Namibia). Limnology and Oceanography, 44: 650–661.

    Google Scholar 

  • Finster, K., Liesack, W., and Thamdrup, B., 1998. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Applied and Environmental Microbiology, 564: 119–125.

    Google Scholar 

  • Fossing, H., and Jørgensen, B.B., 1989. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method. Biogeochemistry, 8: 205–222.

    Google Scholar 

  • Fossing, H., and Jørgensen, B.B., 1990. Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark. Geochimica et Cosmochimica Acta, 54: 2731–2742.

    Google Scholar 

  • Fossing, H., Ferdelman, T.G., and Berg, P., 2000. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia). Geochimica et Cosmochimica Acta, 64: 897–910.

    Google Scholar 

  • Fossing, H., Gallardo, V.A., Jørgensen, B.B., Hüttel, M., Nielsen, L.P., Schulz, H., Canfield, D.E., Forster, S., Glud, R.N., Gundersen, J.K., Küver, J., Ramsing, N.B., Teske, A., Thamdrup, B., and Ulloa, O., 1995. Concentration and transport of nitrate by the matforming sulphur bacterium Thioploca. Nature, 374: 713–715.

    Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1090.

    Google Scholar 

  • Funk, J.A., von Dobeneck, T. and Reitz, A., 2003a. Integrated rock magnetic and geochemical quantification of redoxomorphic iron mineral diagenesis in Late Quaternary sediments from the Equatorial Atlantic. In: Wefer, G., Mulitza, S. and Ratmeyer, V. (eds) The South Atlantic in the Late Quaternary: Reconstruction of Material Budget and Current Systems. Springer, Berlin, pp. 237–260.

    Google Scholar 

  • Funk, J.A., von Dobeneck, T., Wagner, T. and Kasten, S., 2003b. Late Quaternary sedimentation and early diagenesis in the equatorial Atlantic Ocean: Patterns, trends and processes deduced from rock magnetic and geochemical records. In: Wefer, G., Mulitza, S. and Ratmeyer, V. (eds) The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. Springer, Berlin, pp. 461–497.

    Google Scholar 

  • Garrison, T., 1997. Oceanography. Wadsworth Publishing Company, Belmont, California.

    Google Scholar 

  • Giblin, A.E. and Howarth, R.W., 1984. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnology and Oceanography, 29: 47–63.

    Google Scholar 

  • Gingele, F.X. and Dahmke, A., 1994. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments. Paleoceanography, 9: 151–168.

    Google Scholar 

  • Gingele, F.X., Zabel, M., Kasten, S., Bonn, W.J. and Nürnberg, C.C., 1999. Biogenic barium-methods and constraints of application as a proxy for paleoproductivity. In: Fischer G. and Wefer, G. (eds), Use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin, pp. 345–364.

    Google Scholar 

  • Goldhaber, M.B. and Kaplan, I.R., 1974. The sulfur cycle. In: Goldberg, E.D. (ed), The Sea, 5, Wiley, pp 569–655.

    Google Scholar 

  • Goodfellow, W.D. and Jonasson, I.R., 1984. Ocean stagnation and ventilation defined by 34S secular trends in pyrite and barite, Selwyn Basin, Yukon. Geology, 12: 583–586.

    Google Scholar 

  • Greinert, J., Bollwerk, S.M., Derkachev, A., Bohrmann, G. and Suess, E., 2002. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seeps. Earth and Planetary Science Letters, 203: 165–180.

    Google Scholar 

  • Hallam, S.J., Girguis, P.R., Preston, C.M., Richardson, P.M., and DeLong, E.F., 2003. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane oxidizing archaea. Applied and Environmental Microbiology, 69: 5483–5491.

    Google Scholar 

  • Hedges, J.I., and Keil, R.G., 1995. Sedimentary organic matter preservation: An assessment and speculative synthesis. Marine Chemistry, 49: 81–115.

    Google Scholar 

  • Henrichs, S.M. and Reeburgh, W.S., 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal, 5: 191–237.

    Google Scholar 

  • Hensen, C., Zabel, M., Pfeifer, K., Schwenk, T., Kasten, S., Riedinger, N., Schulz, H.D. and Boetius, A., 2003. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for burial of sulfur in marine sediments. Geochimica et Cosmochimica Acta, 67: 2631–2647.

    Google Scholar 

  • Hinrichs, K.-U., and Boetius, A., 2002. The anaerobic oxidation of methane: New insights in microbial ecology and biogeochemistry. In: Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B.B., Schlüter, M., and van Weering, T. (eds), Ocean margin Systems. Springer, Berlin, pp. 457–477.

    Google Scholar 

  • Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and DeLong, E.F., 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398: 802–805.

    Google Scholar 

  • Hinrichs, K.-U., Summons, R.E., Orphan, V., Sylva, S.P., and Hayes, J.M., 2000. Molecular and isotopic analyses of anaerobic methane-oxidizing communities in marine sediments. Organic Geochemistry, 31: 1685–1701.

    Google Scholar 

  • Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8: 451–463.

    Google Scholar 

  • Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., 1998. Thermodynamic control on hydrogen concentration in anoxic sediments. Geochimica et Cosmochimica Acta, 62: 1745–1756.

    Google Scholar 

  • Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., 2001. Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiology Ecology, 38: 33–41.

    Google Scholar 

  • Howarth, R.W., 1979. Pyrite: Its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science, 203: 49–51.

    Google Scholar 

  • Huettel, M., Ziebis, W., Forster, S., and Luther III, G.W., 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochimica et Cosmochimica Acta, 62: 613–631.

    Google Scholar 

  • Ivanov, M.V., 1968. Microbiological processes in the formation of sulfur deposits. Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Iversen, N., and Jørgensen, B.B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 30: 944–955.

    Google Scholar 

  • Jackson, B.E., and McInerney, M.J., 2002. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature, 415: 454–456.

    Google Scholar 

  • Jahnke, R.A., 1996. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Global Biogeochemical Cycles, 10: 71–88.

    Google Scholar 

  • Jannasch, H.W., Nelson, D.C., and Wirsen, C.O., 1989. Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site. Nature, 342: 834–836.

    Google Scholar 

  • Jørgensen, B.B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnology and Oceanography, 22: 814–832.

    Google Scholar 

  • Jørgensen, B.B., 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurements with radiotracer techniques. Geomicrobiology Journal, 1: 11–27.

    Google Scholar 

  • Jørgensen, B.B., 1982. Mineralization of organic matter in the sea bed-The role of sulfate reduction. Nature, 296: 643–645.

    Google Scholar 

  • Jørgensen, B.B., 1983. Processes at the sediment-water interface. In: Bolin, B. and Cook, R.C. (eds), The major biogeochemical cycles and their interactions. SCOPE, pp. 477–509.

    Google Scholar 

  • Jørgensen, B.B., 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science, 249: 152–154.

    Google Scholar 

  • Jørgensen, B.B., 1996. Case Study: Aarhus Bay. In: Jørgensen, B.B., and Richardson, K. (eds), Eutrophication in a coastal marine environment. Coastal and Estuarine Studies, American Geophysical Union, Washington, DC, pp. 137–154

    Google Scholar 

  • Jørgensen, B.B., and Bak, F., 1991. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Applied and Environmental Microbiology, 57: 847–856.

    Google Scholar 

  • Jørgensen, B.B., and Gallardo, V.A., 1999. Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiology Ecology, 28: 301–313.

    Google Scholar 

  • Jørgensen, B.B., and Nelson D.C., 2004. Sulfide oxidation in marine sediments: Geochemistry meets microbiology. In.: Amend, J.P., Edwards, K.J., and Lyons, T.W. (eds), Sulfur Biogeochemistry — Past and Present. Geological Society of America Special Paper 379, Boulder, Colorado, pp. 63–81.

    Google Scholar 

  • Jørgensen, B.B., Bang, M., and Blackburn, T.H., 1990. Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Marine Ecology Progress Series, 59: 39–54.

    Google Scholar 

  • Jørgensen, B.B., Weber, A., and Zopfi, J., 2001. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Research, 48: 2097–2120.

    Google Scholar 

  • Jørgensen, B.B., Böttcher, M.E., Lüschen, H., Neretin, L., and Volkov, I., 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta, 68: 2095–2118.

    Google Scholar 

  • Judd, A.G., Hovland, M., Dimitrov, I.I., Garcia Gil, S., and Jukes, V., 2002. The geological methane budget at Continental Margins and its influence on climate change. Geofluids, 2: 109–126.

    Google Scholar 

  • Kallmeyer, J., Ferdelman, T.G., Weber, A., Fossing, H., and Jørgensen, B. B., 2004. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnology and Oceanography Methods, 2: 171–180.

    Google Scholar 

  • Karlin, R. and Levi, S., 1983. Diagenesis of magnetic minerals in recent hemipelagic sediments. Nature, 303: 327–330.

    Google Scholar 

  • Karlin, R. and Levi, S., 1985. Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. Journal of Geophysical Research, 90: 10373–10392.

    Google Scholar 

  • Kasten, S., Zabel, M., Heuer, V. and Hensen, C., 2003. Processes and signals of nonsteady-state diagenesis in deep-sea sediments and their pore waters. In: Wefer, G., Mulitza, S. and Ratmeyer, V. (eds), The South Atlantic in the Late Quaternary: Reconstruction of Material Budget and Current Systems. Springer, Berlin, pp. 431–459.

    Google Scholar 

  • Kasten, S., Freudenthal, T., Gingele, F.X., von Dobeneck, T. and Schulz, H.D., 1998. Simultaneous formation of iron-rich layers at different redox boundaries in sediments of the Amazon Deep-Sea Fan. Geochimica et Cosmochimica Acta 62: 2253–2264.

    Google Scholar 

  • Kelly, D.P., 1988. Oxidation of sulfur compounds. In: Cole, A.S. and Ferguson, S.J. (eds), The Nitrogen and Sulfur Cycles. Soc. Gen. Microbiol., 42, pp. 65–98.

    Google Scholar 

  • Kjær, T., 2000. Development and application of new biosensors for microbial ecology. Ph.D. Thesis, University of Aarhus, Denmark, 324 p.

    Google Scholar 

  • Knittel, K., Lösekann, T., Boetius, A., Kort, R., and Amann, R., 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology, 71: 467–479.

    Google Scholar 

  • Kölling, A., 1991. Frühdiagenetische Prozesse und Stoff-Flüsse in marinen und ästuarinen Sedimenten. Berichte, 15, Fachbereich Geowissenschaften, Universität Bremen, 140 pp.

    Google Scholar 

  • Krämer, M., and Cypionka, H., 1989. Sulfate formation via ATP sulfurylase in thiosulfate-and sulfite-disproportionating bacteria. Archives of Microbiology, 122: 183–188.

    Google Scholar 

  • Krein, E.B. and Aizenshtat, Z., 1995. Proposed thermal pathways for sulfur transformations in organic macromolecules: Laboratory simulation experiments. In: Vairavamurthy, M.A. and Schoonen, M.A.A. (eds), Geochemical Transformations of Sedimentary Sulfur, ACS symposium series, 612, Washington, DC, pp. 110–137.

    Google Scholar 

  • Krüger, M., Meyerdierks, A., Gloeckner, F.O., Amann, R., Widdel, F., Kube, M., Reinhardt, R., Kahnt, J., Boecher, R., Thauer, R.K., and Shima, S., 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature, 426: 878–881.

    Google Scholar 

  • Lin, S., and Morse, J.W., 1991. Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments. American Journal of Science, 291: 55–89.

    Google Scholar 

  • Lowson, R.T., 1982. Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews, 82: 461–497.

    Google Scholar 

  • Luther, G.W., III, 1987. Pyrite oxidation and reduction: Molecular orbital theory considerations. Geochimica et Cosmochimica Acta, 51: 3193–3199.

    Google Scholar 

  • Luther III, G.W., 1991. Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimia Acta, 55: 2839–2849.

    Google Scholar 

  • Luther III, G.W. and Church, T.M., 1991. An overview of the environment chemistry of sulfur in wetland systems. In: Howarth, R.W. et al (eds), Sulfur cycling on the continents. John Wiley, pp: 125–144.

    Google Scholar 

  • Luther III, G.W., Giblin, A., Howarth, R.W. and Ryans, R.A., 1982. Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochimica et Cosmochimica Acta, 46: 2665–2669.

    Google Scholar 

  • Martens, C.S., and Berner, R.A., 1974. Methane production in the interstitial waters of sulfatedepleted marine sediments. Science, 185: 1167–1169.

    Google Scholar 

  • McCollom, T.M., and Shock, E.L., 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochimica et Cosmochimica Acta, 61: 4375–4391.

    Google Scholar 

  • Mearon, S., Paytan, A. and Bralower, T.J., 2003. Cretaceous strontium isotope stratigraphy using marine barite. Geology, 31: 15–18.

    Google Scholar 

  • Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., Knittel, K., Gieseke, A., Peterknecht, K., Pape, T., Boetius, A., Amann, R., Jørgensen, B.B., Widdel, F., Peckmann, J., Pimenov, N.V., and Gulin, M.B., 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297: 1013–1015.

    Google Scholar 

  • Middelburg, J.B.M., 1990. Early diagenesis and authigenic mineral formation in anoxic sediments of Kau Bay, Indonesia. PhD Thesis, Universitiy of Utrecht, Utrecht, 177 pp.

    Google Scholar 

  • Middelburg, J.J., Soetaert, K., and Herman, P.M.J., 1997. Empirical relationships for use in global diagenetic models. Deep-Sea Research I, 44: 327–344.

    Google Scholar 

  • Moore, T.S., Murray, R.W., Kurtz, A.C. and Schrag, D.P., 2004. Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters, 229: 141–154.

    Google Scholar 

  • Morse, J.W., 1991. Oxidation kinetics of sedimentary pyrite in seawater. Geochimica et Cosmochimica Acta, 55: 3665–3667.

    Google Scholar 

  • Morse, J.W., 2002. Sedimentary geochemistry of the carbonate and sulphide systems and their potential influence on toxic metal bioavailability. In. Gianguzza, A., Pelizzetti, E. and Sammartano, S. (eds), Chemistry of Marine Water and Sediments. Springer, pp. 165–189.

    Google Scholar 

  • Moses, C.O., and Herman, J.S., 1991. Pyrite oxidation at circumneutral pH. Geochimica et Cosmochimica Acta, 55: 471–482.

    Google Scholar 

  • Murray, J.W., Grundmanis, V. and Smethie, W.M. Jr, 1978. Interstitial water chemistry in sediments of Saanich Inlet. Geochimica et Cosmochimica Acta, 42: 1011–1026.

    Google Scholar 

  • Nauhaus, K., Boetius, A., Krüger, M., and Widdel, F., 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental Microbiology, 4: 296–305.

    Google Scholar 

  • Neretin, L., Böttcher, M.E., Jorgensen, B.B., Volkov, I.I., Lüschen, H. and Hilgenfeldt, K., 2004. Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea. Geochimica et Cosmochimica Acta, 68: 2081–2093.

    Google Scholar 

  • Neumann, T., Rausch, N., Leipe, T., Dellwig, O., Berner, Z. and Böttcher, M.E., 2005. Intense pyrite formation under low-sulfate conditions in the Achterwasser lagoon, SW Baltic Sea. Geochimica et Cosmochimica Acta, 69: 3619–3630.

    Google Scholar 

  • Niewöhner, C., Hensen, C., Kasten, S., Zabel, M. and Schulz, H.D., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta, 62: 455–464.

    Google Scholar 

  • Nüster, J., 2005. New methods in biogeochemistry: The development of electrochemical tools for the measurement of dissolved and solid state compounds in natural systems. PhD Thesis, University of Bremen, 216 pp.

    Google Scholar 

  • Orphan, V.J., House, C.H. Hinrichs, K.-U., McKeegan, K.D., DeLong, E.F., 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293: 484–487.

    Google Scholar 

  • Orphan, V.J., House, C.H., Hinrichs, K.-U., McKeegan, K.D., DeLong, E.F., 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences USA, 99: 7663–7668.

    Google Scholar 

  • Orr, W.L. and White, C.M. (eds), 1990. Geochemistry of sulfur in fossil fuels. ACS Symposium Series, 429, Washington, DC.

    Google Scholar 

  • Pancost, R.D., Sinninghe Damsté, J.S., Lint, S.D., van der Marel, M.J.E.C., Gottschal, J.C., and Shipboard Scientific Party, 2000. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Applied and Environmental Microbiology, 66: 1126–1132.

    Google Scholar 

  • Parkes, R.J., Webster, G., Cragg, B.A., Weightman, A.J., Newberry, C.J., Ferdelman, T.G., Kallmeyer, J., Jørgensen, B.B., Aiello, I.W., and Fry, J.C., 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature, 436: 390–394.

    Google Scholar 

  • Passier, H.F., Middelburg, J.J., Os, B.J.H.v. and Lange, G.J.de, 1996. Diagenetic pyritisation under eastern Mediterranean sapropels caused by downward sulphide diffusion. Geochimica et Cosmochimica Acta, 60: 751–763.

    Google Scholar 

  • Paytan, A., Kastner, M., Martin, E.E., MacDougall, J.D., and Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature, 366: 445–449.

    Google Scholar 

  • Paytan, A., Kastner, M. and Chavez, F.P., 1996a. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274: 1355–1357.

    Google Scholar 

  • Paytan, A., Moore, W.S. and Kastner, M., 1996b. Sedimentation rate as determined by 226Ra activity in marine barite. Geochimica et Cosmochi-mica Acta, 60: 4313–4319.

    Google Scholar 

  • Paytan, A., Kastner, M., Campbell, D. and Thiemens, M.H., 1998. Sulfur isotope composition of Cenozoic seawater sulfate. Science, 282: 1459–1462.

    Google Scholar 

  • Paytan, A., Mearon, S., Cobb, K. and Kastner, M., 2002. Origin of marine barite deposits: Sr and S isotope characterization. Geology, 30: 747–750.

    Google Scholar 

  • Paytan, A., Martinez-Ruiz, F., Eagle, M., Ivy, A. and Wankel, S.D., 2004. Using sulfur isotopes to elucidate the origin of barite associated with high organic matter accumulation events in marine sediments. In: Amend, J.P., Edwards, K.J. and Lyons, T.W. (eds), Sulfur Biogeochemistry — Past and Present. Geological Society of America Special Paper 379, pp. 151–160.

    Google Scholar 

  • Poulton, S.W., Krom, M.D. and Raiswell, R., 2004. A revised scheme for the reactivity of iron (oxyhydr)oxides towards dissolved sulfide. Geochimica et Cosmochimica Acta, 68: 3703–3715.

    Google Scholar 

  • Pyzik, A.J. and Sommer, S.E., 1981. Sedimentary iron monosulfides: kinetics and mechanism of formation. Geochimica et Cosmochimica Acta, 45: 687–698.

    Google Scholar 

  • Rabus, R., Hansen, T., and Widdel, F., 2004. Dissimilatory Sulfate-and Sulfur Reducing Prokaryotes. In: Dworkin, M. et al. (eds), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edition, Springer-Verlag, New York, (http://link.springer-ny.com/link/service/books/10125/).

    Google Scholar 

  • Raiswell, R., 1982. Pyrite texture, isotopic composition and the availability of iron. American Journal of Science, 282: 1244–1265.

    Google Scholar 

  • Raiswell, R., 1988. Chemical model for the origin of minor limestone-shale cycles by anaerobic methane oxidation. Geology, 16: 641–644.

    Google Scholar 

  • Raiswell, R., and Canfield, D.E., 1998. Sources of iron for pyrite formation in marine sediments. American Journal of Science, 298: 219–245.

    Google Scholar 

  • Raiswell, R., Canfield, D.E. and Berner, R.A., 1994. A comparison of iron extraction methods for the determination of degree of pyritization and the recognition of iron-limited pyrite formation. Chemical Geology, 111: 101–110.

    Google Scholar 

  • Reeburgh, W.S., 1969. Observations of gases in Chesapeake Bay sediments. Limnology and Oceanography, 14: 368–375.

    Google Scholar 

  • Reeburgh, W.S., 1976. Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters, 47: 345–352.

    Google Scholar 

  • Reeburgh, W.S., 1982. A major sink and flux control for methane in sediments: Anaerobic consumption. In: Fanning, K.A. and Manheim, F.T. (eds), The dynamic environment. Heath, Lexington, MA, pp. 203–217.

    Google Scholar 

  • Reeburgh, W.S., Whalen, S.C., and Alperin, M.J., 1993. The role of methylotrophy in the global methane budget. In: Murrell, J.C., and Kelly, D.P. (eds), Microbial growth on C1 compounds. Intercept, Andover, UK, pp. 1–14.

    Google Scholar 

  • Reitz, A., Hensen, C., Kasten, S., Funk, J. and de Lange, G., 2004. A combined geochemical and rockmagnetic investigation of a redox horizon at the last glacial/interglacial transition. Physics and Chemistry of the Earth, 29: 921–931.

    Google Scholar 

  • Rickard, D.T., 1975. Kinetics and mechanisms of pyrite formation at low temperatures. American Journal of Science, 275: 636–652.

    Google Scholar 

  • Rickard, D. and Luther III, G.W., 1997. Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochimica et Cosmochimica Acta, 61: 115–134.

    Google Scholar 

  • Rickard, D., Schoonen, M.A.A., Luther, G.W., 1995. Chemistry of iron sulfides in sedimentary environments. In: Vairavamurthy, M.A. and Schoonen, M.A.A. (eds), Geochemical Transformations of Sedimentary Sulfur. ACS Symposium Series 612, Washington DC, pp. 168–193.

    Google Scholar 

  • Riedinger, N., 2005. Preservation and diagenetic overprint of geochemical and geophysical signals in ocean margin sediments related to depositional dynamics. Berichte, 242, Fachbereich Geowissenschaften, Universität Bremen, 91 pp.

    Google Scholar 

  • Riedinger, N., Pfeifer, K., Kasten, S., Garming, J.F.L., Vogt, C. and Hensen, C., 2005. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate. Geochimica et Cosmochimica Acta, 69: 4117–4126.

    Google Scholar 

  • Roden, E.E., and Tuttle, J.H., 1992. Sulfide release from estuarine sediments underlying anoxic bottom water. Limnology and Oceanograpy 37: 725–738.

    Google Scholar 

  • Rusch, A., Töpken, H., Böttcher, M.E., and Höpner, T., 1998. Recovery from black spots: results of a loading experiment in the Wadden Sea. Journal of Sea Research, 40: 205–219.

    Google Scholar 

  • Schink, B., 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiological and Molecular Biological Reviews, 61: 262–280.

    Google Scholar 

  • Schinzel, U., 1993. Laboratory experiments on early diagenetic reactions of iron(III) oxyhydroxides in marine sediments (in German). Berichte, 36, Fachbereich Geowissenschaften, Universität Bremen, 189 pp.

    Google Scholar 

  • Schippers, A., 2004. Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. In: Amend, J.P., Edwards, K.J., and Lyons, T.W. (eds), Sulfur biogeochemistry-Past and Present. Geological Society of America Special Paper 379, Boulder, Colorado, pp. 49–62

    Google Scholar 

  • Schippers, A., and Jørgensen, B.B., 2001. Oxidation of pyrite and iron sulfide by manganese in marine sediments. Geochimica et Cosmochimica Acta, 65: 915–922.

    Google Scholar 

  • Schippers, A., and Jørgensen, B.B., 2002. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica et Cosmochimica Acta, 66: 85–92.

    Google Scholar 

  • Schoonen, M.A.A., 2004. Mechanisms of sedimentary pyrite formation. In: Amend, J.P., Edwards, K.J. and Lyons, T.W. (eds), Sulfur Biogeochemistry — Past and Present. Geological Society of America Special Paper 379, pp. 117–134.

    Google Scholar 

  • Schouten, S., Eglington, T.I., Sinninghe Damsté, J.S. and de Leeuw, J.W., 1995. Influence of sulfur crosslinking on the molecular size distribution of sulfurrich macromolecules in bitumen. In: Vairavamurthy, M.A. and Schoonen, M.A.A. (eds), Geochemical transformation of sedimentary sulfur. ACS Symposium 612, Washington, DC, pp. 80–92.

    Google Scholar 

  • Schulz H.D., Dahmke A., Schinzel U., Wallmann K., and Zabel M., 1994. Early diagenetic processes, fluxes and reaction rates in sediments of the South-Atlantic. Geochimica et Cosmochimica Acta, 58: 2041–2060.

    Google Scholar 

  • Schulz, H.N., and Jørgensen, B.B., 2001. Big bacteria. Annual Reviews in Microbiology, 55: 105–137.

    Google Scholar 

  • Schulz, H.N., Brinkhoff, T., Ferdelman, T.G., Hernandez Marine, M., Teske, A., and Jørgensen, B.B., 1999. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science, 284: 493–495.

    Google Scholar 

  • Smith, S.V., and Hollibaugh, J.T., 1993. Coastal metabolism and the oceanic organic carbon balance. Reviews in Geophysics, 31: 75–89.

    Google Scholar 

  • Sørensen, K.B., Finster, K., and Ramsing, N.B., 2001. Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microbial Ecology, 42: 1–10.

    Google Scholar 

  • Sorokin, Yu.L., 1962. Experimental investigation of bacterial sulfate reduction in the Black Sea using S35. Microbiology, 31: 329–335.

    Google Scholar 

  • Stetter, K.O., Huber, R., Blöchl, E., Kurr, M., Eden, R.D., Fielder, M., Cash, H., and Vance, I., 1993. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature, 365: 743–745.

    Google Scholar 

  • Sweeney, R.E. and Kaplan, I.R., 1973. Pyrite Framboid Formation: Laboratory Synthesis and Marine Sediments. Economic Geology, 68: 618–634.

    Google Scholar 

  • Thamdrup, B., and Canfield, D.E., 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnology and Oceanography, 41: 1629–1650.

    Google Scholar 

  • Thamdrup, B., Finster, K, Hansen, J.W., and Bak, F., 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Applied and Environmental Microbiology, 59: 101–108.

    Google Scholar 

  • Thamdrup, B., Fossing, H., and Jørgensen, B.B., 1994a. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta, 58: 5115–5129.

    Google Scholar 

  • Thamdrup, B., Finster, K., Fossing, H., Hansen, J.W., and Jørgensen, B.B., 1994b. Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron and sulfur geochemistry. Geochimica et Cosmochimica Acta, 58: 67–73.

    Google Scholar 

  • Thiel, V., Peckmann, J., Richnow, H.H., Luth, U., Reitner, J., and Michaelis, W., 2001. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Marine Chemistry, 73: 97–112.

    Google Scholar 

  • Thode-Andersen, S., and Jørgensen, B.B., 1989. Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and So in coastal marine sediments. Limnology and Oceanography, 34: 793–806.

    Google Scholar 

  • Torres, M.E., Brumsack, H.J., Bohrmann, G. and Emeis, K.C., 1996. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127: 125–139.

    Google Scholar 

  • Treude, T., Niggemann, J., Kallmeyer, J., Wintersteller, P., Schubert, C.J., Boetius, A., and Jørgensen, B.B., 2005. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochimica et Cosmochimica Acta, 69: 2767–2779.

    Google Scholar 

  • Troelsen, H., and Jørgensen, B.B., 1982. Seasonal dynamics of elemental sulfur in two coastal sediments. Estuarine and Coastal Shelf Science, 15: 255–266.

    Google Scholar 

  • Vairavamurthy, A., Manowitz, B., Luther III, G.W., Jeon, Y., 1993. Oxidation state of sulfur in thiosulfate and implications for anaerobic energy metabolism. Geochimica et Cosmochimica Acta, 57: 1619–1623.

    Google Scholar 

  • Vairavamurthy, M.A., Orr, W.L. and Manowitz, B., 1995. Geochemical transformation of sedimentary sulfur: an introduction. In: Vairavamurthy, M.A. and Schoonen, M.A.A. (eds), Geochemical tranformation of sedimentary sulfur. ACS Symposium, 612, Washington, DC, pp. 1–17.

    Google Scholar 

  • Valentine, D.L., and Reeburgh, W.S., 2000. New perspectives on anaerobic methane oxidation-Minireview. Environmental Microbiology, 2: 477–484.

    Google Scholar 

  • Van Beek, P. and Reyss, J.-L., 2001. 226Ra in marine barite: New constraints on supported 226Ra. Earth Planetary Science Letters, 187: 147–161.

    Google Scholar 

  • Van Beek, P., Reyss, J.-L., Paterne, M., Gersonde, R., Rutgers van der Loeff, M. and Kuhn, G., 2002. 226Ra in barite: Absolute dating of Holocene Southern Ocean sediments and reconstruction of sea-surface reservoir ages. Geology, 30: 731–734.

    Google Scholar 

  • van Cappellen, P., and Wang, Y., 1996. Cycling of iron and manganese in surface sediments: A general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. American Journal of Science, 296: 197–243.

    Google Scholar 

  • Von Breymann, M.T.K., Emeis, K.C. and Suess, E., 1992. Water depth and diagenetic constraints on the use of barium as a paleoproductivity indicator. In: Summerhayes, C.P. (ed) Upwelling Systems: Evolution since the Early Miocene. Geological Society Special Publication 64, pp 273–284.

    Google Scholar 

  • Weber, A., and Jørgensen, B.B., 2002. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. Deep-Sea Research I, 49: 827–841.

    Google Scholar 

  • Werne, J.P., Hollander, D.J., Lyons, T.W. and Sinninghe Damsté, J.S., 2004. Organic sulfur biogeochemistry: Recent advances and future research directions. In: Amend, J.P., Edwards, K.J. and Lyons, T.W. (eds), Sulfur Biogeochemistry — Past and Present. Geological Society of America Special Paper 379, pp. 135–150.

    Google Scholar 

  • Westrich, J.T., and Berner, R.A., 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnology and Oceanography, 29: 236–249.

    Google Scholar 

  • Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161: 291–314.

    Google Scholar 

  • Whitman, W.B., Bowen, T.L., and Boone, D.R., 1999. The methanogenic bacteria. In: Dworkin, M., Balows, A., Trüper, H.G., Harder, W., and Schleifer, K.-H. (eds), The Prokaryotes, 3rd. Ed. Springer, New York.

    Google Scholar 

  • Widdel, F., 1988. Microbiology and ecology of sulfateand sulfur-reduction bacteria. In: Zehnder, A.J.B. (ed), Biology of anaerobic microorganisms. Wiley & Sons, NY, pp. 469–585.

    Google Scholar 

  • Widdel, F. and Hansen, T.A., 1991. The dissimilatory sulfate-and sulfur-reducing bacteria. In: Balows, H. et al. (eds), The Procaryotes. Springer, pp. 583–624.

    Google Scholar 

  • Wilkin, R.T. and Barnes, H.L., 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 60: 4167–4179.

    Google Scholar 

  • Wollast, R., 1998. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In: Brink, K.H., and Robinson, A.R. (eds), The Sea, Vol. 10, pp. 213–252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jørgensen, B.B., Kasten, S. (2006). Sulfur Cycling and Methane Oxidation. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32144-6_8

Download citation

Publish with us

Policies and ethics