Skip to main content

GOCE Gravity Field Processing

  • Conference paper
Gravity, Geoid and Space Missions

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 129))

Abstract

A concept for an operable software system for the processing of a high-accuracy, high-resolution spherical harmonic model of the Earth’s gravity field from GOCE observables (satellite gravity gradiometry (SGG), satellite-to-satellite tracking in high-low mode (hl-SST)) is presented. The software architecture and the data flow are briefly described, and the main software components and recent developments are presented. Selected numerical simulations are performed to demonstrate the functionality of the software. They are based on a realistic mission scenario. Special emphasis is placed on the impact of the new GOCE mission design, i.e. the gravity gradients defined in the Gradiometer Reference Frame (GRF), which deviates from the actual flight direction (Local Orbit Reference Frame; LORF) by a few degrees, and the resulting modified error budget of the GOCE gradiometer. Additionally, the benefits of a combination of the SGG and hl-SST components are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badura, T., Klostius, R., Gruber, C., Sakulin, C. (2004). Derivation of a CHAMP only global gravity field model applying the Energy Integral Approach. Submitted to: Stud. Geophy. Geod. (in review).

    Google Scholar 

  • Cesare, S. (2002). Performance requirements and budgets for the gradiometric mission. Technical Note, GOC-TN-AI-0027, Alenia Spazio, Turin, Italy.

    Google Scholar 

  • ESA (1999). Gravity Field and Steady-State Ocean Circulation Mission. Reports for mission selection, The four candidate Earth explorer core missions, SP-1233(1), European Space Agency, Noordwijk.

    Google Scholar 

  • Földvary, L., Svehla, D., Gerlach, Ch., Wermuth, M., Gruber, T., Rummel, R., Rothacher, M., Frommknecht, B., Peters, T., Steigenberger, P. (2003). Gravity Model TUM-2Sp Based on the Energy Balance Approach and Kinematic CHAMP Orbits. Proc. 2nd CHAMP Science Meeting, GFZ Potsdam, Sprt. 1–4, 2003 (in print).

    Google Scholar 

  • Klees, R., Koop, R., Visser, P.N.A.M., and van den Ussel, J. (2000). Efficient gravity field recovery from GOCE gravity gradient observations. J. Geod., 74, pp. 561–571.

    Article  Google Scholar 

  • Metzler, B. (2004). Core Solver: Combined SST+SGG solution. ASAP-Project “GOCE DAPC Graz”, Bridging Phase, Final Report, Contract ASAP-CO-008/03, WP Ib-4.4, pp. 167–180, Graz.

    Google Scholar 

  • Migliaccio, R., Reguzzoni, M, and Sansó, F. (2003). Space-wise approach to satellite gravity field determinations in the presence of coloured noise. Submitted to J. Geod.

    Google Scholar 

  • Pail, R. (2002). In-orbit calibration and local gravity field continuation problem. ESA-Project “From Eötvös to mGal+”, Final Report, ESA/ESTEC Contract 14287/00/NL/DC, WP 1, pp. 9–112, European Space Agency, Noordwijk.

    Google Scholar 

  • Pail, R. (2004). GOCE Quick-Look Gravity Field Analysis: Treatment of gravity gradients defined in the Gradiometer Reference Frame. Proceedings of the 2nd Internat. GOCE User Workshop, Frascati, March 2004.

    Google Scholar 

  • Pail, R., Lackner, B., and Preimesberger, T. (2003). Quick-Look Gravity Field Analysis (QL-GFA). DAPC Graz, Phase Ia, Final Report, WP Ia-4.1, pp. 107–161, Graz.

    Google Scholar 

  • Pail, R., and Plank, G. (2002). Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J. Geod., 76, pp. 462–474.

    Article  Google Scholar 

  • Pail, R., and Plank, G. (2004). GOCE Gravity Field Processing Strategy. Stud. Geophys. Geod., 48, pp. 289–308.

    Article  Google Scholar 

  • Pail, R., and Wermuth, M. (2003). GOCE SGG and SST quick-look gravity field analysis. Advances in Geosciences, 1, pp. 5–9.

    Google Scholar 

  • Plank, G., and Badura, T. (2004). Combined SST and SGG GOCE Gravity Field. Proc. GGSM 2004, Porto.

    Google Scholar 

  • Preimesberger, T., and Pail, R. (2003). GOCE quick-look gravity solution: application of the semianalytic approach in the case of data gaps and non-repeat orbits. Studia geoph. et geod., 47, pp. 435–453.

    Article  Google Scholar 

  • Rapp, R., Wang, Y., and Pavlis, N. (1991). The Ohio state 1991 geopotential and sea surface topography harmonic coefficient models. OSU Report, 410, Department of Geodetic Science and Surveying, The Ohio State University, Columbus.

    Google Scholar 

  • Rummel, R., van Gelderen, M., Koop, R., Schrama, E., Sansó, E, Brovelli, M., Miggliaccio, F, and Sacerdote, F. (1993). Spherical harmonic analysis of satellite gradiometry. Neth. Geod. Comm., Publications on Geodesy, 39, Delft, The Netherlands.

    Google Scholar 

  • Rummel R, Gruber T, Koop R (2004) High Level Processing Facility for GOCE: Products and Processing Strategy. Proc. of the 2nd Internat. GOCE User Workshop, Frascati, March 2004

    Google Scholar 

  • Schuh, W.-D. (1996). Tailored Numerical Solution Strategies for the Global Determination of the Earth’s Gravity Field, Mitteilungen geod. Inst. TU Graz, 81, Graz Univ. of Technology, Graz.

    Google Scholar 

  • Schuh, W.-D. (2002). Improved modelling of SGG-data sets by advanced filter strategies. ESA-Project “From Eötvös to mGal+” Final Report, ESA/ESTEC Contract 14287/00/NL/DC, WP 2, pp. 113–181, ESA, Noordwijk.

    Google Scholar 

  • Sneeuw, N. (2002). A semi-analytical approach to gravity field analysis from satellite observations. Dissertation, DGK, Reihe C, Munich, 527, Bayerische Akademie d. Wissenschaften, Munich.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pail, R., Schuh, WD., Wermuth, M. (2005). GOCE Gravity Field Processing. In: Jekeli, C., Bastos, L., Fernandes, J. (eds) Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26932-0_7

Download citation

Publish with us

Policies and ethics