Polynomial time algorithms for finding integer relations among real numbers

  • J. Hastad
  • B. Helfrich
  • J. Lagarias
  • C. P. Schnorr
Contributed Papers

DOI: 10.1007/3-540-16078-7_69

Part of the Lecture Notes in Computer Science book series (LNCS, volume 210)
Cite this paper as:
Hastad J., Helfrich B., Lagarias J., Schnorr C.P. (1986) Polynomial time algorithms for finding integer relations among real numbers. In: Monien B., Vidal-Naquet G. (eds) STACS 86. STACS 1986. Lecture Notes in Computer Science, vol 210. Springer, Berlin, Heidelberg

Abstract

We present algorithms, which when given a real vector x∈ℝn and a parameter k∈ℕ as input either find an integer relation m∈ℤn, m≠0 with xTm=0 or prove there is no such integer relation with ‖m‖≦2k. One such algorithm halts after at most O(n3(k+n)) arithmetic operations using real numbers. It finds an integer relation that is no more than \(2^{\frac{{n - 2}}{2}}\)times longer than the length of the shortest relation for x. Given a rational input x∈ℚn this algorithm halts in polynomially many bit operations. The basic algorithm of this kind is due to Ferguson and Forcade (1979) and is closely related to the Lovàsz (1982) lattice basis reduction algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. Hastad
    • 1
  • B. Helfrich
    • 2
  • J. Lagarias
    • 3
  • C. P. Schnorr
    • 2
  1. 1.Department of Computer ScienceMITCambridge
  2. 2.Fachbereich Mathematik/InformatikUniversität FrankfurtGermany
  3. 3.Bell LaboratoriesAT&TMurray Hill

Personalised recommendations