1.

Aho, A.V., Hopcroft, J.E. and Ullman, J.D., The Design and Analysis of Computer Algorithms, Addison Wesley, 1974.

2.

Beneš, V.E.,

Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, New York, 1965.

Google Scholar3.

Borodin, A.B. and Munro, I. The Complexity of Algebraic and Numeric Problems, American Elsevier, 1975.

4.

Ehrenfeucht, A. Practical decidability. Report CU-CS-008-72, Univ. of Colorado (1972).

5.

Erdös, P., Graham and Szemerédi, Ě. On sparse graphs with dense long paths.

Comp. and Maths. with Appls., 1, (1975) 365–369.

CrossRefGoogle Scholar6.

Fischer, M.J. and Rabin, M.O. Super-exponential complexity of Presburger arithmetic. MACTR43, Project MAC, MIT, (1974).

Google Scholar7.

Hopcroft, J.E., Paul, W.J. and Valiant, L.G. Time versus space and related problems. Proc. 16th Symp. on Foundations of Computer Science, Berkeley, (1975) 57–64.

8.

Hartmanis, J., Lewis, P.M. and Stearns, R.E. Classification of Computations by time and memory requirements. Proc. IFIP Congress 1965, Spartan, N.Y., 31–35.

9.

Hyafil, L. and Kung, H.T. The complexity of parallel evaluation of linear recurrence. Proc. 7th ACM Symp. on Theory of Computing (1975) 12–22.

10.

Margulis, G.A. Explicit constructions of Concentrators,

Problemy Peredachi Informatsii, 9: 4(1973) 71–80.

Google Scholar11.

Meyer, A.R. and Stockmeyer, L.J. The word problem for regular expressions with squaring requires exponential space. Proc. 13th IEEE Symp. on Switching and Automata Theory, (1972)125–129.

12.

Paterson, M.S., Fischer, M.J. and Meyer A.R. An improved overlap argument for on-line multiplication.

SIAM-AMS Proceedings Vol

7, (1974) 97–111

Google Scholar13.

Paterson, M.S. and Valiant, L.G. Circuit size is nonlinear in depth.

Theoretical Computer Science 2 (1976) 397–400.

CrossRefGoogle Scholar14.

Paul, W.J. A 2.5N Lower bound for the combinational complexity of boolean functions. Proc. 7th ACM Symp. on Theory of Computing, (1975) 27–36.

15.

Paul, W.J., Tarjan, R.E. and Celoni, J.R. Space bounds for a game on graphs. Proc. 8th ACM Symp. on Theory of Computing, (1976) 149–160.

16.

Pippenger, N. The complexity theory of switching networks. Ph.D. Thesis, Dept. of Elect. Eng., MIT, (1973).

Google Scholar17.

Pippenger, N. Superconcentrators. RC5937. IBM Yorktown Heights (1976).

18.

Pippenger, N. and Valiant, L.G. Shifting graphs and their applications.

JACM 23 (1976) 423–432.

CrossRefGoogle Scholar19.

Schnorr, C.P. Zwei lineare Schranken fur die Komplexität Boolischer Funktionen,

Computing, 13 (1974) 155–171.

Google Scholar20.

Stockmeyer, L.J. and Meyer, A.R. Inherent computational complexity of decision problems in logic and automata theory. Lecture Notes in Computer Science (to appear), Springer

21.

Strassen, V. Die Berechnungkomplexität von elementar symmetrichen Funktionen und von Interpolationskoeffizienten.

Numer. Math 20 (1973) 238–251.

CrossRefGoogle Scholar22.

Strassen, V. Vermeidung von Divisionen,

J.Reine Angew.Math., 264, (1973), 184–202.

Google Scholar23.

Valiant, L.G. On non-linear lower bounds in computational complexity. Proc. 7th ACM Symp. on Theory of Computing, (1975) 45–53.

24.

Valiant, L.G. Universal circuits. Proc. 8th ACM Symp. on Theory of Computing, (1976) 196–203.

25.

Valiant, L.G. Some conjectures relating to superlinear lower bounds. TR85, Dept. of Comp. Sci., Univ. of Leeds (1976).

Google Scholar26.

Winograd, S. On the number of multiplications necessary to compute certain functions.

Comm. on Pure and App. Math. 23 (1970) 165–179.

Google Scholar