Skip to main content

Cucurbituril and Cyclodextrin Complexes of Dendrimers

  • Chapter
  • First Online:
Inclusion Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 222))

Abstract

This chapter reviews the growing body of data on the binding interactions between dendrimers and two types of well-established molecular hosts: cyclodextrins and cucurbit[n]urils. Dendrimers are highly branched macromolecules to which functional groups can be attached in spatially defined locations. The attachment of guest functional groups to dendrimers allows the investigation of their binding interactions with freely diffusing hosts/receptors. The effect of dendrimer size on the thermodynamics of these host–guest reactions varies widely depending on factors described here. In optimum cases, it is possible to use these binding interactions to exert redox control on dendrimer self-assembly and even control the size of the resulting assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lo S-C, Burn PL (2007) Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. Chem Rev 107:1097–1116

    Article  CAS  Google Scholar 

  2. Hwang S-H, Shreiner CD, Moorefield CN, Newkome GR (2007) Recent progress and applications for metallodendrimers. New J Chem 31:1192–1217

    Article  CAS  Google Scholar 

  3. Smith DK (2006) Dendritic gels – many arms make light work. Adv Mater 18:2773–2778

    Article  CAS  Google Scholar 

  4. Boas U, Christensen JB, Heegaard PMH (2006) Dendrimers: design, synthesis and chemical properties. J Mater Chem 16:3785–3798

    Article  CAS  Google Scholar 

  5. Caminade A-M, Maraval A, Majoral J-P (2006) Phosphorus-containing dendrons: synthesis, reactivity, properties, and use as building blocks for various dendritic architectures. Eur J Inorg Chem 887–901.

    Google Scholar 

  6. Smith DK (2006) Dendritic supermolecules–towards controllable nanomaterials. Chem Commun 35:34–44

    Article  Google Scholar 

  7. Kaifer AE (2007) Electron transfer and molecular recognition in metallocene-containing dendrimers. Eur J Inorg Chem 5015–5027.

    Google Scholar 

  8. Ong W, Gómez-Kaifer M, Kaifer AE (2004) Dendrimers as guests in molecular recognition phenomena. Chem Commun 1677–1683.

    Google Scholar 

  9. Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97:1325–1358

    Article  CAS  Google Scholar 

  10. Lee JW, Samal S, Selvapalam N, Kim H-J, Kim K (2003) Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res 36:621–630

    Article  CAS  Google Scholar 

  11. Lagona J, Mukhopadhyay P, Chakrabartri S, Isaacs L (2005) The cucurbit[n]uril family. Angew Chem Int Ed 44:4844–4870

    Article  CAS  Google Scholar 

  12. Jeon WS, Moon K, Park SH, Chun H, Ko YH, Lee JY, Lee ES, Samal S, Selvapalam N, Rekharsky MV, Sindelar V, Sobransingh D, Inoue Y, Kaifer AE, Kim K (2005) Complexation of ferrocene derivatives by the cucurbit[7]uril host: a comparative study of the cucurbituril and cyclodextrin host families. J Am Chem Soc 127:12984–12989

    Article  CAS  Google Scholar 

  13. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1917

    Article  CAS  Google Scholar 

  14. Rekharsky MV, Mori T, Yang C, Ko YH, Selvapalam N, Kim H, Sobransingh D, Kaifer AE, Liu S, Isaacs L, Chen W, Moghaddam S, Gilson MK, Kim K, Inoue Y (2007) A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy-entropy compensation. Proc Nat Acad Sci U S A 104:20737–20742

    Article  CAS  Google Scholar 

  15. Breslow R, Dong SD (1998) Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem Rev 98:1997–2011

    Article  CAS  Google Scholar 

  16. D'Souza VT (2003) Modification of cyclodextrins for use as artificial enzymes. Supramol Chem 15:221–229

    Article  Google Scholar 

  17. Jon SY, Selvapalam N, Oh DH, Kang J-K, Kim S-Y, Jeon YJ, Lee JW, Kim K (2003) Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J Am Chem Soc 125:10186–10187

    Article  CAS  Google Scholar 

  18. Ahern C, Darcy R, O'Keeffe F, Schwinte P (1996) 6-Hydroxyalkylamino-6-deoxy-cyclodextrins: towards dendrimeric host molecules. J Incl Phenom 25:43–46

    Article  CAS  Google Scholar 

  19. Suh J, Hah SS, Lee SH (1997) Dendrimer poly(ethylenimine)s linked to ó-cyclodextrin. Bioorg Chem 25:63–75

    Article  CAS  Google Scholar 

  20. Newkome GR, Godínez LA, Moorefield CN (1998) Molecular recognition using β-cyclodextrin-modified dendrimers: novel building blocks for convergent self-assembly. Chem Commun 1821–1822.

    Google Scholar 

  21. Baussanne I, Benito JM, Mellet CO, Fernández JMG, Law H, Defaye J (2000) Synthesis and comparative lectin-binding affinity of mannosyl-coated β-cyclodextrin-dendrimer constructs. Chem Commun 1489–1490.

    Google Scholar 

  22. Ortega-Caballero F, Giménez-Martínez JJ, García-Fuentes L, Ortiz-Salmerón E, Santoyo-Gonzplez F, Vargas-Berenguel A (2001) Binding affinity Properties of dendritic glycosides based on a ó-cyclodextrin core toward guest molecules and concanavalin A. J Org Chem 66:7786–7795

    Article  CAS  Google Scholar 

  23. Vargas-Berenguel A, Ortega-Caballero F, Santoyo-González F, García-López JJ, Giménez-Martínez JJ, García-Fuentes L, Ortiz-Salmerón E (2002) Dendritic galactosides based on a ó-cyclodextrin core for the construction of site-specific molecular delivery systems: synthesis and molecular recognition studies. Chem Eur J 8:812–827

    Article  CAS  Google Scholar 

  24. Benito JM, Gómez-García M, Ortiz Mellet C, Baussanne I, Defaye J, García Fernández JM (2004) Optimizing saccharide-directed molecular delivery to biological receptors: design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates. J Am Chem Soc 126:10355–10363

    Article  CAS  Google Scholar 

  25. Gómez-García M, Benito JM, Rodríguez-Lucena D, Yu J-X, Chmurski K, Ortiz Mellet C, Gutierrez Gallego R, Maestre A, Defaye J, García Fernández JM (2005) Probing secondary carbohydrate-protein interactions with highly dense cyclodextrin-centered heteroglycoclusters: the heterocluster effect. J Am Chem Soc 127:7970–7971

    Article  Google Scholar 

  26. Isnin R, Salam C, Kaifer AE (1991) Bimodal cyclodextrin complexation of ferrocene derivatives containing n-alkyl chains of varying length. J Org Chem 56:35–41

    Article  CAS  Google Scholar 

  27. Godínez LA, Schwartz L, Criss CM, Kaifer AE (1997) Thermodynamic studies on the complexation of aromatic and aliphatic guests in water and water-urea mixtures. Experimental evidence for the interaction of urea with arene surfaces. J Phys Chem B 101:3376–3380

    Article  Google Scholar 

  28. Alonso B, Cuadrado I, Morán M, Losada J (1994) Organometallic silicon dendrimers. J Chem Soc Chem Commun 2575–2576.

    Google Scholar 

  29. Cuadrado I, Morán M, Casado CM, Alonso B, Lobete F, García B, Ibisate M, Losada J (1996) Ferrocenyl-functionalized poly(propylenimine) dendrimers. Organometallics 15:5278–5280

    Article  CAS  Google Scholar 

  30. Castro R, Cuadrado I, Alonso B, Casado CM, Morán M, Kaifer AE (1997) Multisite inclusion complexation of redox active dendrimer guests. J Am Chem Soc 119:5760–5761

    Article  CAS  Google Scholar 

  31. Valerio C, Fillaut J-L, Ruiz J, Guittard J, Blais J-C, Astruc D (1997) The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J Am Chem Soc 119:2588–2589

    Article  CAS  Google Scholar 

  32. Moozyckine AU, Bookham JL, Deary ME, Davies DM (2001) Structure and stability of cyclodextrin inclusion complexes with the ferrocenium cation in aq. solution: 1H NMR studies. J Chem Soc Perkin Trans 2:1858–1862

    Google Scholar 

  33. Wang Y, Mendoza S, Kaifer AE (1998) Electrochemical reduction of cobaltocenium in the presence of ó-cyclodextrin. Inorg Chem 37:317–320

    Article  CAS  Google Scholar 

  34. González B, Casado CM, Alonso B, Cuadrado I, Morán M, Wang Y, Kaifer AE (1998) Synthesis, electrochemistry and cyclodextrin binding of novel cobaltocenium-functionalized dendrimers. Chem Commun 2569–2570.

    Google Scholar 

  35. González, B, Cuadrado I, Alonso B, Casado CM, Morán M, Kaifer AE (2002) Mixed cobaltocenium-ferrocene heterobimetallic complexes and their binding interactions with ó-cyclodextrin. A three-state, host-guest system under redox control. Organometallics 21:3544–3551

    Article  Google Scholar 

  36. Casado C, González B, Cuadrado I, Alonso B, Morán M, Losada J (2000) Mixed ferrocene-cobaltocenium dendrimers: the most stable organometallic redox systems combined in a dendritic molecule. Angew Chem Int Ed 39:2135–2138

    Article  CAS  Google Scholar 

  37. Michels JJ, Baars MWPL, Meijer EW, Huskens J, Reinhoudt DN (2000) Well-defined assemblies of adamantyl-terminated poly(propyleneimine) dendrimers and ó-cyclodextrin in water. J Chem Soc Perkin Trans 2:1914–1918

    Google Scholar 

  38. Huskeens J, Deij MA, Reinhoudt DN (2002) Attachment of molecules at a molecular printboard by multiple host-guest interactions. Angew Chem Int Ed 41:4467–4471

    Article  Google Scholar 

  39. Ludden MJW, Reinhoudt DN, Huskens J (2006) Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials. Chem Soc Rev 35:1122–1134

    Article  CAS  Google Scholar 

  40. Cameron CS, Gorman CB (2002) Effects of site encapsulation on electrochemical behavior of redox-active core dendrimers. Adv Funct Mater 12:17–20

    Article  CAS  Google Scholar 

  41. Cardona CM, Kaifer AE (1998) Asymmetric redox-active dendrimers containing a ferrocene subunit. Preparation, characterization, and electrochemistry. J Am Chem Soc 120:4023–4024

    Article  CAS  Google Scholar 

  42. Cardona CM, McCarley TD, Kaifer AE (2000) Synthesis, electrochemistry, and interactions with ó-cyclodextrin of dendrimers containing a single ferrocene subunit located “off-center”. J Org Chem 65:1857–1864

    Article  CAS  Google Scholar 

  43. Newkome GR, Behera RK, Moorefield CN, Baker GR (1991) Chemistry of micelles. 18. Cascade polymers: syntheses and characterization of one-directional arborols based on adamantane. J Org Chem 56:7162–7167

    Article  CAS  Google Scholar 

  44. Wang Y, Cardona CM, Kaifer AE (1999) Molecular orientation effects on the rates of heterogeneous electron transfer of unsymmetric dendrimers. J Am Chem Soc 121:9756–9757

    Article  CAS  Google Scholar 

  45. Cardona CM, Alvarez J, Kaifer AE, McCarley TD, Pandey S, Baker GA, Bonzagni NJ, Bright FV (2000) Dendrimers functionalized with a single fluorescent dansyl group attached “off center:” Synthesis and photophysical studies. J Am Chem Soc 122:6139–6144

    Article  CAS  Google Scholar 

  46. Ashton PR, Balzani V, Clemente-Leon M, Colonna B, Credi A, Jayaraman N, Raymo FM, Stoddart JF, Venturi M (2002) Ferrocene-containing carbohydrate dendrimers. Chem Eur J 8:673–684

    Article  CAS  Google Scholar 

  47. Newkome GR, Kotta KK, Moorefield CN (2006) Design, synthesis and characterization of conifer-shaped dendritic architectures. Chem Eur J 12:3726–3734

    Article  CAS  Google Scholar 

  48. Chechik V, Ionita G (2006) Supramolecular complexes of spin-labelled cyclodextrins. Org Biomol Chem 4:3505–3510

    Article  CAS  Google Scholar 

  49. Lee JW, Ko YH, Park S-H, Yamaguchi K, Kim K (2001) Novel pseudorotaxane-terminated dendrimers: supramolecular modification of dendrimer periphery. Angew Chem Int Ed 40:746–749

    Article  CAS  Google Scholar 

  50. Ong W, Gomez-Kaifer M, Kaifer AE (2002) Cucurbit[7]uril: a very effective host for viologens and their cation radicals. Org Lett 4:1791–1794

    Article  CAS  Google Scholar 

  51. Ong W, Kaifer AE (2004) Salt effects on the apparent stability of the cucurbit[7]uril-methyl viologen inclusion complex. J Org Chem 69:1383–1385

    Article  CAS  Google Scholar 

  52. Ong W, Kaifer AE (2002) Unusual electrochemical properties of unsymmetric viologen dendrimers. J Am Chem Soc 124:9358–9359

    Article  CAS  Google Scholar 

  53. Ong W, Kaifer AE (2003) Molecular encapsulation by cucurbit[7]uril of the apical 4,4′ -bipyridinium residue in Newkome-type dendrimers. Angew Chem Int Ed 42:2164–2167

    Article  CAS  Google Scholar 

  54. Ong W, Kaifer AE (2003) Unusual electrochemical properties of the inclusion complexes of ferrocenium and cobaltocenium with cucurbit[7]uril. Organometallics 22:4181–4183

    Article  CAS  Google Scholar 

  55. Sobransingh D, Kaifer AE (2006) New dendrimers containing a single cobaltocenium unit covalently attached to the apical position of newkome dendrons: electrochemistry and guest binding interactions with cucurbit[7]uril. Langmuir 22:10540–10544

    Article  CAS  Google Scholar 

  56. Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) The cucurbit[n]uril family: prime components for self-sorting systems. J Am Chem Soc 127:15959–15967

    Article  CAS  Google Scholar 

  57. Sobransingh D, Kaifer AE (2005) Binding interactions between the host cucurbit[7]uril and dendrimer guests containing a single ferrocenyl residue. Chem Commun 5071–5073.

    Google Scholar 

  58. Jeon WS, Kim H-J, Lee C, Kim K (2002) Control of the stoichiometry in host-guest complexation by redox chemistry of guests: inclusion of methylviologen in cucurbit[8]uril. Chem Commun 1828–1829.

    Google Scholar 

  59. Moon K, Grindstaff J, Sobransingh D, Kaifer AE (2004) Cucurbit[8]uril-mediated redox-controlled self-assembly of viologen-containing dendrimers. Angew Chem Int Ed 43:5496–5499

    Article  CAS  Google Scholar 

  60. Wang W, Kaifer AE (2006) Electrochemical switching and size selection in cucurbit[8]uril-mediated dendrimer self-assembly. Angew Chem Int Ed 45:7042–7046

    Article  CAS  Google Scholar 

  61. Ong W, Grindstaff J, Sobransingh D, Toba R, Quintela JM, Peinador C, Kaifer AE (2005) Electrochemical and guest binding properties of Fréchet- and Newkome-type dendrimers with a single viologen unit located at their apical positions. J Am Chem Soc 127:3353–3361

    Article  CAS  Google Scholar 

  62. Roessler BJ, Bielinska AU, Janczak K, Lee I, Baker JR (2001) Substituted ó-cyclodextrins interact with PAMAM dendrimer-DNA complexes and modify transfection efficiency. Biochem Biophys Res Commun 283:12–129

    Article  Google Scholar 

  63. Arima H, Kihara F, Hirayama F, Uekama K (2001) Enhancement of gene expression by polyamidoamine dendrimer conjugates with gα–, ó-, and gγ-cyclodextrins. Bioconjugate Chem 12:476–484

    Article  CAS  Google Scholar 

  64. Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K (2002) Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with α-cyclodextrin. Bioconjugate Chem 13:1211–1219

    Article  CAS  Google Scholar 

  65. Tsutumi T, Arima H, Hirayama F, Uekama K (2006) Potential use of dendrimer/a-cyclodextrin conjugate as a novel carrier for small interfering RNA (siRNA). J Incl Phenom 56:81–84

    Article  Google Scholar 

  66. Lim Y, Kim T, Lee JW, Kim S, Kim H-J, Kim K, Park J (2002) Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA: noncovalent strategy in developing a gene delivery carrier. Bioconjugate Chem 13:1181–1185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the U.S. National Science Foundation for the sustained and generous support of this research. Wei Wang acknowledges a Maytag graduate fellowship from the University of Miami. Angel Kaifer acknowledges the contributions of many excellent graduate students and postdoctoral associates whose names are given in the list of references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel E. Kaifer* .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Wang, W., Kaifer*, A.E. (2009). Cucurbituril and Cyclodextrin Complexes of Dendrimers. In: Wenz, G. (eds) Inclusion Polymers. Advances in Polymer Science, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2008_1

Download citation

Publish with us

Policies and ethics