Skip to main content

Theoretical Approaches for Understanding the Interplay Between Stress and Chemical Reactivity

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 369))

Abstract

The use of mechanical stresses to induce chemical reactions has attracted significant interest in recent years. Computational modeling can play a significant role in developing a comprehensive understanding of the interplay between stresses and chemical reactivity. In this review, we discuss techniques for simulating chemical reactions occurring under mechanochemical conditions. The methods described are broadly divided into techniques that are appropriate for studying molecular mechanochemistry and those suited to modeling bulk mechanochemistry. In both cases, several different approaches are described and compared. Methods for examining molecular mechanochemistry are based on exploring the force-modified potential energy surface on which a molecule subjected to an external force moves. Meanwhile, it is suggested that condensed phase simulation methods typically used to study tribochemical reactions, i.e., those occurring in sliding contacts, can be adapted to study bulk mechanochemistry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

AP:

Attachment point

CASMP2:

Complete active space Møller–Plesset 2nd order perturbation theory

CASSCF:

Complete active space self-consistent field

CPMD:

Car–Parrinello molecular dynamics

DFT:

Density functional theory

EFEI:

External force is explicitly included

FF:

Force field

FMPES:

Force-modified potential energy surface

GSSNEB:

Generalized solid-state nudged elastic band

IRC:

Intrinsic reaction coordinate

MD:

Molecular dynamics

MEP:

Minimum energy path

NEB:

Nudged elastic band

PES:

Potential energy surface

PP:

Pulling point

QC:

Quantum chemical

QM/MM:

Quantum mechanics/molecular mechanics

RI:

Registry index

SMD:

Steered molecular dynamics

TS:

Transition state

References

  1. Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487

    Article  CAS  Google Scholar 

  2. Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105:2921–2948

    Article  CAS  Google Scholar 

  3. James SL, Adams CJ, Bolm C et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41(1):413–447

    Article  CAS  Google Scholar 

  4. Rosen BM, Percec V (2007) Mechanochemistry: a reaction to stress. Nature 446:381–382

    Article  CAS  Google Scholar 

  5. Seidel CAM, Kühnemuth R (2014) Mechanochemistry: molecules under pressure. Nat Nanotechnol 9:164–165

    Article  CAS  Google Scholar 

  6. Black AL, Lenhardt JM, Craig SL (2011) From molecular mechanochemistry to stress-responsive materials. J Mater Chem 21:1655–1663

    Article  CAS  Google Scholar 

  7. Kreuzer HJ, Payne SH, Livadaru L (2001) Stretching a macromolecule in an atomic force microscope: statistical mechanical analysis. Biophys J 80:2505–2514

    Article  CAS  Google Scholar 

  8. Kersey FR, Yount WC, Craig SL, Carolina N (2006) Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J Am Chem Soc 128:3886–3887

    Article  CAS  Google Scholar 

  9. Duwez A-S, Cuenot S, Jérôme C, Gabriel S, Jérôme R, Rapino S, Zerbetto F (2006) Mechanochemistry: targeted delivery of single molecules. Nat Nanotechnol 1:122–125

    Article  CAS  Google Scholar 

  10. Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72:1335–1346

    Article  CAS  Google Scholar 

  11. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Article  CAS  Google Scholar 

  12. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  CAS  Google Scholar 

  13. Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816

    Article  CAS  Google Scholar 

  14. Yang Q-Z, Huang Z, Kucharski TJ, Khvostichenko D, Chen J, Boulatov R (2009) A molecular force probe. Nat Nanotechnol 4:302–306

    Article  CAS  Google Scholar 

  15. Lundbæk JA, Collingwood SA (2010) Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 7:373–395

    Article  CAS  Google Scholar 

  16. Suslick KS (2004) Sonochemistry. Compr Coord Chem II 1:731–739

    CAS  Google Scholar 

  17. Basedow AM, Ebert KH (1977) Ultrasonic degradation of polymers in solution. Adv Polym Sci 22:83–148

    Article  CAS  Google Scholar 

  18. Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249

    Article  CAS  Google Scholar 

  19. Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427

    Article  CAS  Google Scholar 

  20. James SL, Friščić T (2013) Mechanochemistry. Chem Soc Rev 42:7494–7496

    Article  CAS  Google Scholar 

  21. Friščić T, Halasz I, Beldon PJ, Belenguer AM, Adams F, Kimber SAJ, Honkimäki V, Dinnebier RE (2013) Real-time and in situ monitoring of mechanochemical milling reactions. Nat Chem 5:66–73

    Google Scholar 

  22. Christinat N, To J, Schu C, Scopelliti R, Severin K (2009) Synthesis of molecular nanostructures by multicomponent condensation reactions in a ball mill. J Am Chem Soc 131:3154–3155

    Article  CAS  Google Scholar 

  23. Cravotto G, Cintas P (2010) Reconfiguration of stereoisomers under sonomechanical activation. Angew Chem Int Ed Engl 49:6028–6030

    Article  CAS  Google Scholar 

  24. Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75:662–671

    Article  CAS  Google Scholar 

  25. Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci 98:468–472

    Article  CAS  Google Scholar 

  26. Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M, Clarke J (2002) Mechanical unfolding of a Titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J Mol Biol 322:841–849

    Article  CAS  Google Scholar 

  27. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub E, Gaub HE (1997) Reversible unfolding of individual Titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  CAS  Google Scholar 

  28. Weder C (2009) Polymers react to stress. Nature 459:45–46

    Article  CAS  Google Scholar 

  29. Kochhar GS, Bailey A, Mosey NJ (2010) Competition between orbitals and stress in mechanochemistry. Angew Chem Int Ed Engl 49:7452–7455

    Article  CAS  Google Scholar 

  30. Ong MT, Leiding J, Tao H, Virshup AM, Martinez TJ (2009) First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. J Am Chem Soc 131:6377–6379

    Article  CAS  Google Scholar 

  31. Ribas-Arino J, Shiga M, Marx D (2009) Understanding covalent mechanochemistry. Angew Chem Int Ed Engl 48:4190–4193

    Article  CAS  Google Scholar 

  32. Beyer MK (2000) The mechanical strength of a covalent bond calculated by density functional theory. J Chem Phys 112:7307–7312

    Article  CAS  Google Scholar 

  33. Friedrichs J, Lüssmann M, Frank I (2010) Conservation of orbital symmetry can be circumvented in mechanically induced reactions. Chemphyschem 11:3339–3342

    Article  CAS  Google Scholar 

  34. Ribas-Arino J, Shiga M, Marx D (2009) Unravelling the mechanism of force-induced ring-opening of benzocyclobutenes. Chem Eur J 15:13331–13335

    Article  CAS  Google Scholar 

  35. Makarov DE, Wang Z, Thompson JB, Hansma HG (2002) On the interpretation of force extension curves of single protein molecules. J Chem Phys 116:7760–7765

    Article  CAS  Google Scholar 

  36. Konda SSM, Avdoshenko SM, Makarov DE (2014) Exploring the topography of the stress-modified energy landscapes of mechanosensitive molecules. J Chem Phys 140:104114

    Article  CAS  Google Scholar 

  37. Bailey A, Mosey NJ (2012) Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1,3-cyclohexadiene. J Chem Phys 136:044102

    Article  CAS  Google Scholar 

  38. Beyer MK (2003) Coupling of mechanical and chemical energy: proton affinity as a function of external force. Angew Chem Int Ed Engl 42:4913–4915

    Article  CAS  Google Scholar 

  39. Lupton EM, Achenbach F, Weis J, Bräuchle C, Frank I (2006) Modified chemistry of siloxanes under tensile stress: interaction with environment. J Phys Chem B 110:14557–14563

    Article  CAS  Google Scholar 

  40. Lupton EM, Nonnenberg C, Frank I, Achenbach F, Weis J, Bräuchle C (2005) Stretching siloxanes: an ab initio molecular dynamics study. Chem Phys Lett 414:132–137

    Article  CAS  Google Scholar 

  41. Aktah D, Frank I (2002) Breaking bonds by mechanical stress: when do electrons decide for the other side? J Am Chem Soc 124:3402–3406

    Article  CAS  Google Scholar 

  42. Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329:1057–1060

    Article  CAS  Google Scholar 

  43. Lenhardt JM, Ogle JW, Ong MT, Choe R, Martinez TJ, Craig SL (2011) Reactive cross-talk between adjacent tension-trapped transition states. J Am Chem Soc 133:3222–3225

    Article  CAS  Google Scholar 

  44. Kryger MJ, Ong MT, Odom SA, Sottos NR, White SR, Martinez TJ, Moore JS (2010) Masked cyanoacrylates unveiled by mechanical force. J Am Chem Soc 132:4558–4559

    Article  CAS  Google Scholar 

  45. Konôpka M, Turanský R, Reichert J, Fuchs H, Marx D, Štich I (2008) Mechanochemistry and thermochemistry are different: stress-induced strengthening of chemical bonds. Phys Rev Lett 100:115503

    Article  CAS  Google Scholar 

  46. Dopieralski P, Anjukandi P, Rückert M, Shiga M, Ribas-Arino J, Marx D (2011) On the role of polymer chains in transducing external mechanical forces to benzocyclobutene mechanophores. J Mater Chem 21:8309–8316

    Google Scholar 

  47. Ribas-arino J, Shiga M, Marx D (2010) Mechanochemical transduction of externally applied forces to mechanophores. J Am Chem Soc 132:10609–10614

    Article  CAS  Google Scholar 

  48. Harrison JA, Gao G, Schall JD, Knippenberg MT, Mikulski PT (2008) Friction between solids. Philos Trans R Socient A 366:1469–1495

    Article  CAS  Google Scholar 

  49. Mosey NJ, Muser M (2007) Atomistic modeling of friction. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, 25th ed. Wiley-VCH, New York, pp 67–124

    Google Scholar 

  50. Schlierf M, Li H, Fernandez JM (2004) The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc Natl Acad Sci USA 101:7299–7304

    Article  CAS  Google Scholar 

  51. Fernandez JM, Li H (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303:1674–1678

    Article  CAS  Google Scholar 

  52. Potisek SL, Davis DA, Sottos NR, White SR, Moore JS (2007) Mechanophore-linked addition polymers. J Am Chem Soc 129:13808–13809

    Article  CAS  Google Scholar 

  53. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) How strong is a covalent bond? Science 283:1727–1730

    Article  CAS  Google Scholar 

  54. Freitas A, Sharma M (2001) Detachment of particles from surfaces: an AFM study. J Colloid Interface Sci 233:73–82

    Article  CAS  Google Scholar 

  55. Iozzi MF, Helgaker T, Uggerud E (2009) Assessment of theoretical methods for the determination of the mechanochemical strength of covalent bonds. Mol Phys 107:2537–2546

    Article  CAS  Google Scholar 

  56. Su T, Purohit PK (2009) Mechanics of forced unfolding of proteins. Acta Biomater 5:1855–1863

    Article  CAS  Google Scholar 

  57. Ikai A, Alimujiang Y (2001) Force–extension curves of dimerized polyglutamic acid. Appl Phys A 120:117–120

    Article  Google Scholar 

  58. Davis DA, Hamilton A, Yang J et al (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459:68–72

    Article  CAS  Google Scholar 

  59. Zemanová M, Bleha T (2005) Isometric and isotensional force-length profiles in polymethylene chains. Macromol Theory Simulations 14:596–604

    Article  CAS  Google Scholar 

  60. Keller D, Swigon D, Bustamante C (2003) Relating single-molecule measurements to thermodynamics. Biophys J 84:733–738

    Article  CAS  Google Scholar 

  61. Paulusse JMJ, Sijbesma RP (2004) Reversible mechanochemistry of a Pd(II) coordination polymer. Angew Chem Int Ed Engl 43:4460–4462

    Article  CAS  Google Scholar 

  62. Karthikeyan S, Potisek SL, Piermattei A, Sijbesma RP (2008) Highly efficient mechanochemical scission of silver-carbene coordination polymers. J Am Chem Soc 130:14968–14969

    Article  CAS  Google Scholar 

  63. Piermattei A, Karthikeyan S, Sijbesma RP (2009) Activating catalysts with mechanical force. Nat Chem 1:133–137

    Article  CAS  Google Scholar 

  64. Izailev S, Stepaniants S et al (1999) Steered molecular dynamics. In: Deuflhard P, Hermans J, Leimkuhler B, Mark AE, Reich S, Skeel RD (eds) Computational molecular dynamics: challenges, methods, ideas, vol 4. Springer, New York, pp 39–65

    Chapter  Google Scholar 

  65. Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72:1568–1581

    Article  CAS  Google Scholar 

  66. Grubmuiller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271:997–999

    Article  Google Scholar 

  67. Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K (2001) Steered molecular dynamics investigations of protein function. J Mol Graph Model 19:13–25

    Article  CAS  Google Scholar 

  68. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230

    Article  CAS  Google Scholar 

  69. Stepaniants S, Izrailev S, Schulten K (1997) Extraction of lipids from phospholipid membranes by steered molecular dynamics. J Mol Model 3:473–475

    Article  CAS  Google Scholar 

  70. Silberstein MN, Cremar LD, Beiermann BA, Kramer SB, Martinez TJ, White SR, Sottos NR (2014) Modeling mechanophore activation within a viscous rubbery network. J Mech Phys Solids 63:141–153

    Article  CAS  Google Scholar 

  71. Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martínez TJ, Boydston AJ, Moore JS (2014) Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat Chem 6:623–628

    Article  CAS  Google Scholar 

  72. Franco I, George CB, Solomon GC, Schatz GC, Ratner MA (2011) Mechanically activated molecular switch through single-molecule pulling. J Am Chem Soc 133:2242–2249

    Article  CAS  Google Scholar 

  73. Franco I, Schatz GC, Ratner MA (2009) Single-molecule pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation. J Chem Phys 131:124902

    Article  CAS  Google Scholar 

  74. Paturej J, Kuban L, Milchev A, Vilgis TA (2012) Tension enhancement in branched macromolecules upon adhesion on a solid substrate. Europhys Lett 97:58003

    Article  CAS  Google Scholar 

  75. Ghosh A, Dimitrov DI, Rostiashvili VG, Milchev A, Vilgis TA (2010) Thermal breakage and self-healing of a polymer chain under tensile stress. J Chem Phys 132:204902

    Article  CAS  Google Scholar 

  76. Paturej J, Milchev A, Rostiashvili VG, Vilgis TA (2011) Polymer chain scission at constant tension – an example of force-induced collective behaviour. Europhys Lett 94:48003

    Article  CAS  Google Scholar 

  77. Paturej J, Dubbeldam JLA, Rostiashvili VG, Milchev A, Vilgis TA (2014) Force spectroscopy of polymer desorption: theory and molecular dynamics simulation. Soft Matter 10:2785–2799

    Article  CAS  Google Scholar 

  78. Wiita AP, Perez-Jimenez R, Walther KA, Gräter F, Berne BJ, Holmgren A, Sanchez-Ruiz JM, Fernandez JM (2007) Probing the chemistry of thioredoxin catalysis with force. Nature 450:124–127

    Article  CAS  Google Scholar 

  79. Li W, Gräter F (2010) Atomistic evidence of how force dynamically regulates thiol/disulfide exchange. J Am Chem Soc 132:16790–16795

    Article  CAS  Google Scholar 

  80. Baldus IB, Gräter F (2012) Mechanical force can fine-tune redox potentials of disulfide bonds. Biophys J 102:622–629

    Article  CAS  Google Scholar 

  81. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  82. Smalø HS, Uggerud E (2013) Breaking covalent bonds using mechanical force, which bond breaks? Mol Phys 111:1563–1573

    Article  CAS  Google Scholar 

  83. Smalø HS, Uggerud E (2012) Ring opening vs. direct bond scission of the chain in polymeric triazoles under the influence of an external force. Chem Comm 48:10443–10445

    Article  CAS  Google Scholar 

  84. Kryger MJ, Munaretto AM, Moore S (2011) Structure-mechanochemical activity relationships for cyclobutane mechanophores. J Am Chem Soc 133:18992–18998

    Article  CAS  Google Scholar 

  85. Lourderaj U, McAfee JL, Hase WL (2008) Potential energy surface and unimolecular dynamics of stretched n-butane. J Chem Phys 129:094701

    Article  CAS  Google Scholar 

  86. Schmidt SW, Beyer MK, Clausen-Schaumann H (2008) Dynamic strength of the silicon-carbon bond observed over three decades of force-loading rates. J Am Chem Soc 130:3664–3668

    Article  CAS  Google Scholar 

  87. Iozzi MF, Helgaker T, Uggerud E (2011) Influence of external force on properties and reactivity of disulfide bonds. J Phys Chem A 115:2308–3215

    Article  CAS  Google Scholar 

  88. Groote R, Szyja M, Pidko EA, Hensen EJM, Sijbesma RP (2011) Unfolding and mechanochemical scission of supramolecular polymers containing a metal-ligand coordination bond. Macromolecules 44:9187–9195

    Article  CAS  Google Scholar 

  89. Shiraki T, Diesendruck CE, Moore JS (2014) The mechanochemical production of phenyl cations through heterolytic bond scission. Faraday Discuss. doi:10.1039/C4FD00027G

    Google Scholar 

  90. Krüger D, Rousseau R, Fuchs H, Marx D (2003) Towards “mechanochemistry”: mechanically induced isomerizations of thiolate-gold clusters. Angew Chem Int Ed Engl 42:2251–2253

    Article  CAS  Google Scholar 

  91. Huang Z, Yang Q, Khvostichenko D, Kucharski TJ, Chen J, Boulatov R (2009) Method to derive restoring forces of strained molecules from kinetic measurements. J Am Chem Soc 131:1407–1409

    Article  CAS  Google Scholar 

  92. Kucharski TJ, Yang Q-Z, Tian Y, Boulatov R (2010) Strain-dependent acceleration of a paradigmatic SN2 reaction accurately predicted by the force formalism. J Phys Chem Lett 1:2820–2825

    Article  CAS  Google Scholar 

  93. Kucharski TJ, Huang Z, Yang Q-Z, Tian Y, Rubin NC, Concepcion CD, Boulatov R (2009) Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew Chemie 121:7174–7177

    Article  Google Scholar 

  94. Akbulatov S, Tian Y, Kapustin E, Boulatov R (2013) Model studies of the kinetics of ester hydrolysis under stretching force. Angew Chem Int Ed Engl 52:6992–6995

    Article  CAS  Google Scholar 

  95. Akbulatov S, Tian Y, Boulatov R (2012) Force−reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J Am Chem Soc 134:7620–7623

    Article  CAS  Google Scholar 

  96. Tian Y, Kucharski TJ, Yang Q-Z, Boulatov R (2013) Model studies of force-dependent kinetics of multi-barrier reactions. Nat Commun 4:2538

    Article  CAS  Google Scholar 

  97. Kucharski TJ, Boulatov R (2011) The physical chemistry of mechanoresponsive polymers. J Mater Chem 21:8237–8255

    Article  CAS  Google Scholar 

  98. Hermes M, Boulatov R (2011) The entropic and enthalpic contributions to force-dependent dissociation kinetics of the pyrophosphate bond. J Am Chem Soc 133(50):20044–20047

    Article  CAS  Google Scholar 

  99. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  100. Hofbauer F, Frank I (2010) Disulfide bond cleavage: a redox reaction without electron transfer. Chem Eur J 16:5097–5101

    Article  CAS  Google Scholar 

  101. Hofbauer F, Frank I (2012) CPMD simulation of a bimolecular chemical reaction: nucleophilic attack of a disulfide bond under mechanical stress. Chem Eur J 18:16332–16338

    Article  CAS  Google Scholar 

  102. Krupička M, Sander W, Marx D (2014) Mechanical manipulation of chemical reactions: reactivity switching of Bergman cyclizations. J Phys Chem Lett 5:905–909

    Article  CAS  Google Scholar 

  103. Stauch T, Dreuw A (2014) Force-spectrum relations for molecular optical force probes. Angew Chem Int Ed Engl 53:2759–2761

    Article  CAS  Google Scholar 

  104. Smalø HS, Rybkin VV, Klopper W, Helgaker T, Uggerud E (2014) Mechanochemistry: the effect of dynamics. J Phys Chem A 118:7683–7694

    Article  CAS  Google Scholar 

  105. Schmidt M, Baldridge K (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  106. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Wallingford

    Google Scholar 

  107. Kauzmann W, Eyring H (1940) The viscous flow of large molecules. J Am Chem Soc 62:3113–3125

    Article  CAS  Google Scholar 

  108. Bell G (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  CAS  Google Scholar 

  109. Dopieralski P, Ribas-Arino J, Anjukandi P, Krupicka M, Kiss J, Marx D (2013) The Janus-faced role of external forces in mechanochemical disulfide bond cleavage. Nat Chem 5:685–691

    Article  CAS  Google Scholar 

  110. Lele TP, Thodeti CK, Ingber DE (2006) Force meets chemistry: analysis of mechanochemical conversion in focal adhesions using fluorescence recovery after photobleaching. J Cell Biochem 97:1175–1183

    Article  CAS  Google Scholar 

  111. Greenberg MJ, Moore JR (2010) The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton 67:273–285

    Article  CAS  Google Scholar 

  112. Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748

    Article  CAS  Google Scholar 

  113. Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72(4):1541–1555

    Article  CAS  Google Scholar 

  114. Evans E (2001) Probing the relation between force-lifetime and chemistry. Annu Rev Biophys Biomol Struct 30:105–128

    Article  CAS  Google Scholar 

  115. Konda SSM, Brantley JN, Bielawski CW, Makarov DE (2011) Chemical reactions modulated by mechanical stress: extended Bell theory. J Chem Phys 135:164103

    Article  CAS  Google Scholar 

  116. Konda SSM, Brantley JN, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE (2013) Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. J Am Chem Soc 135:12722–12729

    Article  CAS  Google Scholar 

  117. Brantley JN, Konda SSM, Makarov DE, Bielawski CW (2012) Regiochemical effects on molecular stability: a mechanochemical evaluation of 1,4- and 1,5-disubstituted triazoles. J Am Chem Soc 134:9882–9885

    Article  CAS  Google Scholar 

  118. Tian Y, Boulatov R (2013) Comparison of the predictive performance of the Bell-Evans, Taylor-expansion and statistical-mechanics models of mechanochemistry. Chem Comm 49:4187–4189

    Article  CAS  Google Scholar 

  119. Hsu SM, Zhang J, Yin Z (2002) The nature and origin of tribochemistry. Tribol Lett 13:131–139

    Article  CAS  Google Scholar 

  120. Kajdas C (2013) General approach to mechanochemistry and its relations to tribochemistry. In: Pihtili H (ed) Tribology in engineering. InTech, pp 209–240

    Google Scholar 

  121. Liang T, Sawyer WG, Perry SS, Sinnott SB, Phillpot SR (2008) First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys Rev B 77:104105

    Article  CAS  Google Scholar 

  122. Smith GS, Modine NA, Waghmare UV, Kaxiras E (1998) First-principles study of static nanoscale friction between MoO3. J Comput Mater Des 5:61–71

    Article  CAS  Google Scholar 

  123. Modine NA, Zumbach G, Kaxiras E (1997) Adaptive-coordinate real-space electronic structure calculations for atoms, molecules, and solids. Phys Rev B 55:10289

    Article  CAS  Google Scholar 

  124. Lees AW, Edwards SF (1972) The computer study of transport processes under extreme conditions. J Phys C Solid State Phys 5:1921–1929

    Article  Google Scholar 

  125. Zilibotti G, Righi MC (2011) Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir 27:6862–6867

    Article  CAS  Google Scholar 

  126. Wang J, Want F, Li J, Sun Q, Yuan P, Jia Y (2013) Comparative study of friction properties for hydrogen- and fluorine-modified diamond surfaces: a first-principles investigation. Surf Sci 608:74–79

    Article  CAS  Google Scholar 

  127. Wang L-F, Ma T-B, Hu Y-Z, Wang H (2012) Atomic-scale friction in graphene oxide: an interfacial interaction perspective from first-principles calculations. Phys Rev B 86:125436

    Article  CAS  Google Scholar 

  128. Wang L-F, Ma T-B, Hu Y-Z, Wang H, Shao T-M (2013) Ab initio study of the friction mechanism of fluorographene and graphane. J Phys Chem C 117:12520–12525

    Article  CAS  Google Scholar 

  129. Leven I, Krepel D, Shemesh O, Hod O (2013) Robust superlubricity in graphene/h-BN heterojunctions. J Phys Chem Lett 4:115–120

    Article  CAS  Google Scholar 

  130. Hod O (2013) The registry index: a quantitative measure of materials’ interfacial commensurability. ChemPhysChem 14:2376–2391

    Article  CAS  Google Scholar 

  131. Zhong W, Tománek D (1990) First-principles theory of atomic-scale friction. Phys Rev Lett 64:3054–3057

    Article  CAS  Google Scholar 

  132. Neitola R, Pakkanen TA (2001) Ab initio studies on the atomic-scale origin of friction between diamond (111) surfaces. J Phys Chem B 105:1338–1343

    Article  CAS  Google Scholar 

  133. Koskilinna JO, Linnolahti M, Pakkanen TA (2005) Tribochemical reactions between methylated diamond (111) surfaces: a theoretical study. Tribol Lett 20:157–161

    Article  CAS  Google Scholar 

  134. Neitola R, Pakkanen TA (2006) Ab initio studies on nanoscale friction between fluorinated diamond surfaces: effect of model size and level of theory. J Phys Chem B 110:16660–16665

    Article  CAS  Google Scholar 

  135. Neitola R, Pakkanen TA (2004) Ab initio studies on the atomic-scale origin of friction between hydrocarbon layers. Chem Phys 299:47–56

    Article  CAS  Google Scholar 

  136. Neitola R, Ruuska H, Pakkanen TA (2005) Ab initio studies on nanoscale friction between graphite layers: effect of model size and level of theory. J Phys Chem B 109:10348–10354

    Article  CAS  Google Scholar 

  137. Koskilinna JO, Linnolahti M, Pakkanen TA (2007) Friction paths for cubic boron nitride: an ab initio study. Tribol Lett 27:145–154

    Article  CAS  Google Scholar 

  138. Koskilinna JO, Linnolahti M, Pakkanen TA (2008) Friction and a tribochemical reaction between ice and hexagonal boron nitride: a theoretical study. Tribol Lett 29:163–167

    Article  CAS  Google Scholar 

  139. Ogata S, Li J, Hirosaki N, Shibutani Y, Yip S (2004) Ideal shear strain of metals and ceramics. Phys Rev B 70:104104

    Article  CAS  Google Scholar 

  140. Liao P, Carter EA (2010) Ab initio density functional theory+U predictions of the shear response of iron oxides. Acta Mater 58:5912–5925

    Article  CAS  Google Scholar 

  141. Mosey NJ, Liao P, Carter EA (2008) Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. J Chem Phys 129:014103

    Article  CAS  Google Scholar 

  142. Mosey NJ, Carter EA (2009) Shear strength of chromia across multiple length scales: An LDA+U study. Acta Mater 57:2933–2943

    Article  CAS  Google Scholar 

  143. Mills G, Jónsson H (1994) Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys Rev Lett 72:1124–1127

    Article  CAS  Google Scholar 

  144. Mills G, Jónsson H, Schenter G (1995) Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 324:305–337

    Article  CAS  Google Scholar 

  145. Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds) Class Quantum Dyn Condens Phase Simulations. World Scientific, Singapore, pp 385–404

    Google Scholar 

  146. Caspersen KJ, Carter EA (2005) Finding transition states for crystalline solid-solid phase transformations. Proc Natl Acad Sci 102:6738–6743

    Article  CAS  Google Scholar 

  147. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  148. Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012) A generalized solid-state nudged elastic band method. J Chem Phys 136:074103

    Article  CAS  Google Scholar 

  149. Trinkle D, Hennig R, Srinivasan S, Hatch D, Jones M, Stokes H, Albers R, Wilkins J (2003) New mechanism for the α to ω martensitic transformation in pure titanium. Phys Rev Lett 91:025701

    Article  CAS  Google Scholar 

  150. Hennig RG, Trinkle DR, Bouchet J, Srinivasan SG, Albers RC, Wilkins JW (2005) Impurities block the α to ω martensitic transformation in titanium. Nat Mater 4:129–133

    Article  CAS  Google Scholar 

  151. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  152. Liu J, Johnson D (2009) bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: coupled shuffle and shear modes. Phys Rev B 79:134113

    Google Scholar 

  153. Xiao P, Henkelman G (2012) Communication: from graphite to diamond: reaction pathways of the phase transition. J Chem Phys 137:101101

    Article  CAS  Google Scholar 

  154. Vu NH, Le HV, Cao TM, Pham VV, Le HM, Nguyen-Manh D (2012) Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach. J Phys Condens Matter 24:405501

    Article  CAS  Google Scholar 

  155. Dong X, Zhou X-F, Qian G-R, Zhao Z, Tian Y, Wang H-T (2013) An ab initio study on the transition paths from graphite to diamond under pressure. J Phys Condens Matter 25:145402

    Article  CAS  Google Scholar 

  156. Xiao P, Cheng J-G, Zhou J-S, Goodenough JB, Henkelman G (2013) Mechanism of the CaIrO3 post-perovskite phase transition under pressure. Phys Rev B 88:144102

    Article  CAS  Google Scholar 

  157. Dai Y, Ni S, Li Z, Yang J (2013) Diffusion and desorption of oxygen atoms on graphene. J Phys Condens Matter 25:405301

    Article  CAS  Google Scholar 

  158. Briquet LGV, Wirtz T, Philipp P (2013) First principles investigation of Ti adsorption and migration on Si(100) surfaces. J Appl Phys 114:243505

    Article  CAS  Google Scholar 

  159. Jennings PC, Aleksandrov HA, Neyman KM, Johnston RL (2014) A DFT study of oxygen dissociation on platinum based nanoparticles. Nanoscale 6:1153–1165

    Article  CAS  Google Scholar 

  160. Harrison JA, White CT, Colton RJ, Brenner DW (1992) Molecular-dynamics simulation of atomic-scale friction of diamond surfaces. Phys Rev B 46:9700–9708

    Article  CAS  Google Scholar 

  161. Harrison JA, Colton RJ, White CT, Brenner DW (1993) Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces. Wear 168:127–133

    Article  CAS  Google Scholar 

  162. Harrison JA, White CT, Colton RJ, Brenner DW (1995) Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics. Thin Solid Films 260:205–211

    Article  CAS  Google Scholar 

  163. Gao G, Cannara RJ, Carpick RW, Harrison JA (2007) Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23:5394–5405

    Article  CAS  Google Scholar 

  164. Yue D-C, Ma T-B, Hu Y-Z, Yeon J, van Duin ACT, Wang H, Luo J (2013) Tribochemistry of phosphoric acid sheared between quartz surfaces: a reactive molecular dynamics study. J Phys Chem C 117:25604–25614

    Article  CAS  Google Scholar 

  165. Carkner CJ, Mosey NJ (2010) Slip mechanisms of hydroxylated α-Al2O3 (0001)/(0001) interfaces: a first-principles molecular dynamics study. J Phys Chem C 114:17709–17719

    Article  CAS  Google Scholar 

  166. Carkner CJ, Haw SM, Mosey NJ (2010) Effect of adhesive interactions on static friction at the atomic scale. Phys Rev Lett 105:056102

    Article  CAS  Google Scholar 

  167. Haw SM, Mosey NJ (2012) Tribochemistry of aldehydes sheared between (0001) surfaces of α-alumina from first-principles molecular dynamics. J Phys Chem C 116:2132–2145

    Article  CAS  Google Scholar 

  168. Haw SM, Mosey NJ (2011) Chemical response of aldehydes to compression between (0001) surfaces of α-alumina. J Chem Phys 134:014702

    Article  CAS  Google Scholar 

  169. Bernasconi M, Chiarotti GL, Focher P, Scandolo S, Tosatti E, Parrinello M (1995) First-principle-constant pressure molecular dynamics. J Phys Chem Solids 56:501–505

    Article  CAS  Google Scholar 

  170. Wentzcovitch R (1991) Invariant molecular-dynamics approach to structural phase transitions. Phys Rev B 44:2358–2361

    Article  Google Scholar 

  171. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  172. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  173. Serra S (1999) Pressure-induced solid carbonates from molecular CO2 by computer simulation. Science 284:788–790

    Article  CAS  Google Scholar 

  174. Mugnai M, Pagliai M, Cardini G, Schettino V (2008) Mechanism of the ethylene polymerization at very high pressure. J Chem Theory Comput 4:646–651

    Article  CAS  Google Scholar 

  175. Bernasconi M, Chiarotti G, Focher P, Parrinello M, Tosatti E (1997) Solid-state polymerization of acetylene under pressure: ab initio simulation. Phys Rev Lett 78:2008–2011

    Article  CAS  Google Scholar 

  176. Schettino V, Bini R (2007) Constraining molecules at the closest approach: chemistry at high pressure. Chem Soc Rev 36:869–880

    Article  CAS  Google Scholar 

  177. Mosey N, Woo T, Müser M (2005) Energy dissipation via quantum chemical hysteresis during high-pressure compression: a first-principles molecular dynamics study of phosphates. Phys Rev B 72:054124

    Article  CAS  Google Scholar 

  178. Mosey NJ, Müser MH, Woo TK (2005) Molecular mechanisms for the functionality of lubricant additives. Science 307:1612–1615

    Article  CAS  Google Scholar 

  179. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  180. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  181. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council of Canada’s Discovery Grant Program is acknowledged. GSK is grateful for support from the Ontario Graduate Scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Mosey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kochhar, G.S., Heverly-Coulson, G.S., Mosey, N.J. (2015). Theoretical Approaches for Understanding the Interplay Between Stress and Chemical Reactivity. In: Boulatov, R. (eds) Polymer Mechanochemistry. Topics in Current Chemistry, vol 369. Springer, Cham. https://doi.org/10.1007/128_2015_648

Download citation

Publish with us

Policies and ethics