Skip to main content

Recent Advances in H-Phosphonate Chemistry. Part 2. Synthesis of C-Phosphonate Derivatives

  • Chapter
  • First Online:
Phosphorus Chemistry II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 361))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al-salalen:

1,2-Diaminocyclohexane-based Al-complexes

BHT:

Butylated hydroxytoluene

BINOL-Al:

Binaphthyl Al-complex; for the structure

BINOL-Ti:

Binaphthyl Ti-complex

bipy:

2,2′-Bipyridine

Cp2ZrHCl:

Bis(cyclopentadienyl)zirconium hydrogen chloride

Cpf:

Cyclopalladated ferrocenylimines

DBN:

1,5-Diazabicyclo(4.3.0)non-5-ene

DIPEA:

N,N-Diisopropylethylamine

DMA:

N,N-Dimethylacetamide

dmphen:

2,9-Dimethyl-1,10-phenanthroline

DPAP:

2,2-Dimethoxy-2-phenylacetophenone

dpephos:

Bis-[2-(diphenylphosphino)phenyl]ether

dppf:

1,1′-Bis(diphenylphosphino)ferrocene

dppp:

Dichloro[1,3-bis(diphenylphosphino)propane

KHMDS:

Potassium bis(trimethylsilyl)amide

Pd2(dba)3(CHCl3):

Tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct

PEG-600:

Polyethylene glycol, MW 600 Da

Pht-M:

Tetra-tert-butylphthalocyanine complexes

Pro:

Proline

(R)-BINAP:

(R)-(1,1′-Binaphthalene-2,2′-diyl)bis(diphenylphosphine)

Schiff-Al:

Tridentate Schiff base Al(III) complexes

SDS:

Sodium dodecylsulfate

(S)-TRIP:

Binaphthyl-derived phosphoric acid

TAP:

Tetraaminophosphonium salt

TBO-Al:

Bis(8-quinolinato) dinaphthyl

TPP:

Triphenylphosphine

TPPA:

Phthalocyanine analogues

Tween-20:

Polyoxyethylene sorbitan monolaurate

Xantphos:

(9,9-Dimethyl-9H-xanthene-4,5-diyl)bis-(diphenylphosphine)

References

  1. Engel R (1977) Phosphonates as analogues of natural phosphates. Chem Rev 77:349–367

    CAS  Google Scholar 

  2. Kafarski P, Lejczak B (1991) Aminophosphonates. Phosphorus Sulfur Silicon Relat Elem 63:193–215

    CAS  Google Scholar 

  3. Huang JM, Chen RY (2000) An overview of recent advances on the synthesis and biological activity of α-aminophosphonic acid derivatives. Heteroatom Chem 11:480–492

    CAS  Google Scholar 

  4. Engel R (1992) The use of carbon-phosphorus analogue compounds in the regulation of biological processes. In: Engel R (ed) Handbook of organophosphorus chemistry. Marcel Dekker, New York, pp 559–600

    Google Scholar 

  5. Kalek M, Stawinski J (2013) Stereoselective methods for carbon-phosphorus (C-P) bond formation, Chap. 47. In: Andrushko V, Andrushko N (eds) Stereoselective synthesis of drugs and natural products, 2V set. Wiley, London

    Google Scholar 

  6. Eto M (1992) Phosphorus containing insecticides. In: Engel R (ed) Handbook of organophosphorus chemistry. Marcel Dekker, New York, pp 807–873

    Google Scholar 

  7. Sikorski JA, Logusch EW (1992) Aliphatic carbon-phosphorus compounds as herbicides. In: Engel R (ed) Handbook of organophosphorus chemistry. Marcel Dekker, New York, pp 739–805

    Google Scholar 

  8. Corbridge DEC (1985) Phosphorus. An outline of its chemistry, biochemistry, and technology. Elsevier, Amsterdam

    Google Scholar 

  9. Michaelis A, Kaehne R (1898) Über das Verhalten der Jodalkyle gegen di soge. Phosphorigsäureester oder O-phosphine. Chem Ber 31:1048–1055

    CAS  Google Scholar 

  10. Bhattacharya AK, Thyagarajan G (1981) The Michaelis-Arbuzov rearrangement. Chem Rev 81:415–430

    CAS  Google Scholar 

  11. Michaelis A, Becker T (1897) Über die constitution of phosphorigen Säure. Chem Ber 30:1003–1009

    CAS  Google Scholar 

  12. Waschbüsch R, Carran J, Marinetti A, Savignac P (1997) The synthesis of dialkyl α-halogenated methylphosphonates. Synthesis 1997:727–743

    Google Scholar 

  13. Olszewski TK (2014) Environmentally benign syntheses of α-substituted phosphonates: preparation of α-amino- and α-hydroxyphosphonates in water, in ionic liquids, and under solvent-free conditions. Synthesis 46:403–429

    Google Scholar 

  14. Zefirov NS, Matveeva ED (2008) Catalytic Kabachnik-Fields reaction: new horizons for old reaction. Arkivoc 1:1–17

    Google Scholar 

  15. Beletskaya IP, Kazankova MA (2002) Catalytic methods for building up phosphorus-carbon bond. Russ J Org Chem 38:1391–1430

    CAS  Google Scholar 

  16. Tappe FMJ, Trepohl VT, Oestreich M (2010) Transition-metal-catalyzed C-P cross-coupling reactions. Synthesis 2010:3037–3062

    Google Scholar 

  17. Demmer CS, Krogsgaard-Larsen N, Bunch L (2011) Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem Rev 111:7981–8006

    CAS  Google Scholar 

  18. Van der Jeugh S, Stevens CV (2009) Direct phosphonylation of aromatic azaheterocycles. Chem Rev 109:2672–2702

    Google Scholar 

  19. Glueck DS (2010) Recent advances in metal-catalyzed C–P bond formation. Top Organomet Chem 31:65–100

    CAS  Google Scholar 

  20. Zhao DP, Wang R (2012) Recent developments in metal catalyzed asymmetric addition of phosphorus nucleophiles. Chem Soc Rev 41:2095–2108

    CAS  Google Scholar 

  21. Montchamp JL (2013) Organophosphorus synthesis without phosphorus trichloride: the case for the hypophosphorous pathway. Phosphorus Sulfur Silicon Relat Elem 188:66–75

    CAS  Google Scholar 

  22. Montchamp J-L (2013) Phosphinate chemistry in the 21st century: a viable alternative to the use of phosphorus trichloride in organophosphorus synthesis. Acc Chem Res 47:77–87

    Google Scholar 

  23. Ordóñez M, Sayago FJ, Cativiela C (2012) Synthesis of quaternary α-aminophosphonic acids. Tetrahedron 68:6369–6412

    Google Scholar 

  24. Pudovik AN, Konovalova IV (1979) Addition reactions of esters of phosphorus(III) acids with unsaturated systems. Synthesis 1979:81–96

    Google Scholar 

  25. Fields SC (1999) Synthesis of natural products containing a C–P bond. Tetrahedron 55:12237–12273

    CAS  Google Scholar 

  26. Juribasic M, Stella L, Marinic Z, Vinkovic M, Traldi P, Tusek-Bozic L (2009) Unexpected course of Kabachnik-Fields reaction in the microwave synthesis of quinoline-based α-aminophosphonates. Lett Org Chem 6:11–16

    CAS  Google Scholar 

  27. Kabachnik MM, Minaeva LI, Beletskaya IP (2009) Synthesis of novel α-aminophosphonates containing adamantyl fragment. Synthesis 2009:2357–2360

    Google Scholar 

  28. Keglevich G, Balint E (2012) The Kabachnik-Fields reaction: mechanism and synthetic use. Molecules 17:12821–12835

    CAS  Google Scholar 

  29. Sobhani S, Vafaee A (2009) Micellar solution of sodium dodecyl sulfate (SDS) catalyzes Kabacknik-Fields reaction in aqueous media. Synthesis 2009:1909–1915

    Google Scholar 

  30. Sundar CS, Srinivasulu D, Nayak SK, Reddy CS (2012) Tween-20: an efficient catalyst for one-pot synthesis of α-aminophosphonates in aqueous media. Phosphorus Sulfur Silicon Relat Elem 187:523–534

    CAS  Google Scholar 

  31. Meunier B, Sorokin A (1997) Oxidation of pollutants catalyzed by metallophthalocyanines. Acc Chem Res 30:470–476

    CAS  Google Scholar 

  32. Matveeva ED, Podrugina TA, Tishkovskaya EV, Tomilova LG, Zefirov NS (2003) A novel catalytic three-component synthesis (Kabachnick-Fields reaction) of α-aminophosphonates from ketones. Synlett 15:2321–2324

    Google Scholar 

  33. Matveeva ED, Podrugina TA, Kolesnikova IN, Borisenko AA, Zefirov NS (2009) Aminopyridines as amino components in the catalytic synthesis of α-aminophosphonates. Russ Chem Bull 58:119–125

    CAS  Google Scholar 

  34. Sobhani S, Safaei E, Asadi M, Jalili F (2008) An eco-friendly procedure for the efficient synthesis of dialkyl α-aminophosphonates in aqueous media. J Organomet Chem 693:3313–3317

    CAS  Google Scholar 

  35. Tillu VH, Dumbre DK, Wakharkar RD, Choudhary VR (2011) One-pot three-component Kabachnik-Fields synthesis of α-aminophosphonates using H-beta zeolite catalyst. Tetrahedron Lett 52:863–866

    CAS  Google Scholar 

  36. Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM (2013) Iron-doped single walled carbon nanotubes as an efficient and reusable heterogeneous catalyst for the synthesis of organophosphorus compounds under solvent-free conditions. Tetrahedron 69:4708–4724

    CAS  Google Scholar 

  37. Kaboudin B, Zahedi H (2008) Calcium chloride as an efficient Lewis base catalyst for the one-pot synthesis of α-aminophosphonic esters. Chem Lett 37:540–541

    CAS  Google Scholar 

  38. Thirumurugan P, Nandakumar A, Priya NS, Muralidaran D, Perumal PT (2010) KHSO4-mediated synthesis of α-amino phosphonates under a neat condition and their 31P NMR chemical shift assignments. Tetrahedron Lett 51:5708–5712

    CAS  Google Scholar 

  39. Atar AB, Oh J, Kim JT, Jeong YT (2014) Phosphorofluoridic acid promoted rapid protocol for the synthesis of fluorine-containing α-aminophosphonates under solvent-free conditions. Monatsh Chem 145:329–336

    CAS  Google Scholar 

  40. Tibhe G, Bedolla-Medrano M, Cativiela C, Ordóñez M (2012) Phenylboronic acid as efficient and eco-friendly catalyst for the one-pot, three-component synthesis of α-aminophosphonates under solvent-free conditions. Synlett 23:1931–1936

    CAS  Google Scholar 

  41. Kaboudin B, Jafari E (2008) Hydrophosphorylation of imines catalyzed by tosyl chloride for the synthesis of α-aminophosphonates. Synlett 2008:1837–1839

    Google Scholar 

  42. Todorov PT, Pavlov ND, Shivachev BL, Petrova RN, Martinez J, Naydenova ED, Calmes M (2012) Synthesis of new racemic and optically active N-phosphonoalkyl bicyclic α-amino acids via the Kabachnik-Fields reaction as potential biologically active compounds. Heteroatom Chem 23:123–130

    CAS  Google Scholar 

  43. Yang D, Zhao D, Mao L, Wang L, Wang R (2011) Copper/DIPEA-catalyzed, aldehyde-induced tandem decarboxylation-coupling of natural α-amino acids and phosphites or secondary phosphine oxides. J Org Chem 76:6426–6431

    CAS  Google Scholar 

  44. Kaboudin B, Karami L, J-y K, Aoyama H, Yokomatsu T (2013) A catalyst-free, three-component decarboxylative coupling of amino acids with aldehydes and H-dialkylphosphites for the synthesis of α-aminophosphonates. Tetrahedron Lett 54:4872–4875

    CAS  Google Scholar 

  45. Gao Y, Huang Z, Zhuang R, Xu J, Zhang P, Tang G, Zhao Y (2013) Direct transformation of amides into α-amino phosphonates via a reductive phosphination process. Org Lett 15:4214–4217

    CAS  Google Scholar 

  46. Das B, Satyalakshmi G, Suneel K, Damodar K (2009) Organic reactions in water: a distinct novel approach for an efficient synthesis of α-amino phosphonates starting directly from nitro compounds. J Org Chem 74:8400–8402

    CAS  Google Scholar 

  47. Abell JP, Yamamoto H (2008) Catalytic enantioselective Pudovik reaction of aldehydes and aldimines with tethered bis(8-quinolinato) (TBOx) aluminum complex. J Am Chem Soc 130:10521–10523

    CAS  Google Scholar 

  48. George J, Sridhar B, Reddy BVS (2014) First example of quinine-squaramide catalyzed enantioselective addition of diphenyl phosphite to ketimines derived from isatins. Org Biomol Chem 12:1595–1602

    CAS  Google Scholar 

  49. Bhadury PS, Zhang Y, Zhang S, Song B, Yang S, Hu D, Chen Z, Xue W, Jin L (2009) An effective route to fluorine containing asymmetric α-aminophosphonates using chiral Brønsted acid catalyst. Chirality 21:547–557

    CAS  Google Scholar 

  50. Bhadury P, Li H (2012) Organocatalytic asymmetric hydrophosphonylation/Mannich reactions using thiourea, cinchona and Brønsted acid catalysts. Synlett 23:1108–1131

    CAS  Google Scholar 

  51. Cheng X, Goddard R, Buth G, List B (2008) Direct catalytic asymmetric three-component Kabachnik-Fields reaction. Angew Chem Int Ed 47:5079–5081

    CAS  Google Scholar 

  52. Khan HA, Ellman JA (2013) Asymmetric synthesis of α-aminophosphonate esters by the addition of dialkyl phosphites to tert-butanesulfinyl imines. Synthesis 45:3147–3150

    CAS  Google Scholar 

  53. Kolodiazhnyi OI (2006) Chiral hydroxyphosphonates: synthesis, configuration, and biological properties. Russ Chem Rev 75:227–253

    CAS  Google Scholar 

  54. Merino P, Marqués-López E, Herrera RP (2008) Catalytic enantioselective hydrophosphonylation of aldehydes and imines. Adv Synth Catal 350:1195–1208

    CAS  Google Scholar 

  55. Abramov WS (1950) On the interaction of dialkyl phosphonic acids with aldehydes and ketones. A new method for the synthesis of esters of α-hydroxyphosphonic acids. Dokl Akad Nauk SSSR 73:487–489

    CAS  Google Scholar 

  56. Hudson HR, Yusuf RO, Matthews RW (2008) The preparation of dimethyl α-hydroxyphosphonates and the chemical shift non-equivalence of their diastereotopic methyl ester groups. Phosphorus Sulfur Silicon Relat Elem 183:1527–1540

    CAS  Google Scholar 

  57. Kabachnik MM, Minaeva LI, Beletskaya IP (2009) Catalytic synthesis of α-hydroxyphosphonates. Russ J Org Chem 45:1119–1122

    CAS  Google Scholar 

  58. Mandhane PG, Joshi RS, Nagargoje DR, Gill CH (2010) Ultrasound-promoted greener approach to synthesize α-hydroxy phosphonates catalyzed by potassium dihydrogen phosphate under solvent-free condition. Tetrahedron Lett 51:1490–1492

    CAS  Google Scholar 

  59. Rostami A, Atashkar B, Moradi D (2013) Synthesis, characterization and catalytic properties of magnetic nanoparticle supported guanidine in base catalyzed synthesis of α-hydroxyphosphonates and α-acetoxyphosphonates. Appl Catal A 467:7–16

    CAS  Google Scholar 

  60. Wu Q, Zhou J, Yao Z, Xu F, Shen Q (2010) Lanthanide amides [(Me3Si)2 N]4Ln(μ-Cl)Li(THF)3 catalyzed hydrophosphonylation of aryl aldehydes. J Org Chem 75:7498–7501

    CAS  Google Scholar 

  61. Zhou S, Wang H, Ping J, Wang S, Zhang L, Zhu X, Wei Y, Wang F, Feng Z, Gu X, Yang S, Miao H (2012) Synthesis and characterization of organolanthanide complexes with a calix[4]-pyrrolyl ligand and their catalytic activities toward hydrophosphonylation of aldehydes and unactivated ketones. Organometallics 31:1696–1702

    CAS  Google Scholar 

  62. Zhou S, Wu Z, Rong J, Wang S, Yang G, Zhu X, Zhang L (2012) Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes. Chem Eur J 18:2653–2659

    CAS  Google Scholar 

  63. de Noronha RG, Costa PJ, Romao CC, Calhorda MJ, Fernandes AC (2009) MoO2Cl2 as a novel catalyst for C-P bond formation and for hydrophosphonylation of aldehydes. Organometallics 28:6206–6212

    Google Scholar 

  64. Torvisco A, O’Brien AY, Ruhlandt-Senge K (2011) Advances in alkaline earth-nitrogen chemistry. Coord Chem Rev 255:1268–1292

    CAS  Google Scholar 

  65. Liu B, Carpentier JF, Sarazin Y (2012) Highly effective alkaline earth catalysts for the sterically governed hydrophosphonylation of aldehydes and nonactivated ketones. Chem Eur J 18:13259–13264

    CAS  Google Scholar 

  66. Zhou X, Liu Y, Chang L, Zhao J, Shang D, Liu X, Lin L, Feng X (2009) Highly efficient synthesis of quaternary α-hydroxy phosphonates via Lewis acid-catalyzed hydrophosphonylation of ketones. Adv Synth Catal 351:2567–2572

    CAS  Google Scholar 

  67. Zhao Z, Xue W, Gao Y, Tang G, Zhao Y (2013) Copper-catalyzed synthesis of α-hydroxy phosphonates from H-phosphonates and alcohols or ethers. Chem Asian J 8:713–716

    CAS  Google Scholar 

  68. Patel DV, Rielly-Gauvin K, Ryono DE, Free CA, Rogers WL, Smith SA, DeForrest JM, Oehl RS, Petrillo EW (1995) α-Hydroxy phosphinyl-based inhibitors of human renin. J Med Chem 38:4557–4569

    CAS  Google Scholar 

  69. Smith AB III, Yager KM, Taylor CM (1995) Enantioselective synthesis of diverse α-amino phosphonate diesters. J Am Chem Soc 117:10879–10888

    CAS  Google Scholar 

  70. Gou S, Zhou X, Wang J, Liu X, Feng X (2008) Asymmetric hydrophosphonylation of aldehydes catalyzed by bifunctional chiral Al(III) complexes. Tetrahedron 64:2864–2870

    CAS  Google Scholar 

  71. Zhou X, Liu X, Yang X, Shang D, Xin J, Feng X (2008) Highly enantioselective hydrophosphonylation of aldehydes catalyzed by tridentate Schiff base aluminum(III) complexes. Angew Chem Int Ed 47:392–394

    CAS  Google Scholar 

  72. Suyama K, Sakai Y, Matsumoto K, Saito B, Katsuki T (2010) Highly enantioselective hydrophosphonylation of aldehydes: base-enhanced aluminum-salalen catalysis. Angew Chem Int Ed 49:797–799

    CAS  Google Scholar 

  73. Zhou X, Zhang Q, Hui Y, Chen W, Jiang J, Lin L, Liu X, Feng XM (2010) Catalytic asymmetric synthesis of quaternary α-hydroxy trifluoromethyl phosphonate via chiral aluminum(III) catalyzed hydrophosphonylation of trifluoromethyl ketones. Org Lett 12:4296–4299

    CAS  Google Scholar 

  74. Li W, Qin S, Su Z, Hu C, Feng X (2012) Theoretical study on the mechanism and stereochemistry of salicylaldehyde-Al(III)-catalyzed hydrophosphonylation of benzaldehyde. Comput Theor Chem 989:44–50

    CAS  Google Scholar 

  75. Li W, Qin S, Su Z, Yang H, Hu C (2011) Theoretical study on the mechanism of Al(salalen)-catalyzed hydrophosphonylation of aldehydes. Organometallics 30:2095–2104

    CAS  Google Scholar 

  76. Yang F, Zhao D, Lan J, Xi P, Yang L, Xiang S, You J (2008) Self-assembled bifunctional catalysis induced by metal coordination interactions: an exceptionally efficient approach to enantioselective hydrophosphonylation. Angew Chem Int Ed 47:5646–5649

    CAS  Google Scholar 

  77. Uraguchi D, Ito T, Ooi T (2009) Generation of chiral phosphonium dialkyl phosphite as a highly reactive P-nucleophile: application to asymmetric hydrophosphonylation of aldehydes. J Am Chem Soc 131:3836–3837

    CAS  Google Scholar 

  78. Naka H, Kanase N, Ueno M, Kondo Y (2008) Chiral bisphosphazides as dual basic enantioselective catalysts. Chem Eur J 14:5267–5274

    CAS  Google Scholar 

  79. Goulioukina NS, Bondarenko GN, Bogdanov AV, Gavrilov KN, Beletskaya IP (2009) Asymmetric hydrogenation of α-keto phosphonates with chiral palladium catalysts. Eur J Org Chem 2009:510–515

    Google Scholar 

  80. Gondi VB, Hagihara K, Rawal VH (2009) Diastereoselective and enantioselective synthesis of tertiary α-hydroxy phosphonates through hydrogen-bond catalysis. Angew Chem Int Ed 48:776–779

    CAS  Google Scholar 

  81. Huang J, Wang J, Chen X, Wen Y, Liu X, Feng X (2008) Highly enantioselective allylation of aromatic α-keto phosphonates catalyzed by chiral N, N′-dioxide-indium(III) complexes. Adv Synth Catal 350:287–294

    CAS  Google Scholar 

  82. Perera S, Naganaboina VK, Wang L, Zhang B, Guo Q, Rout L, Zhao C-G (2011) Organocatalytic highly enantioselective synthesis of β-formyl-α-hydroxyphosphonates. Adv Synth Catal 353:1729–1734

    CAS  Google Scholar 

  83. Sobhani S, Vafaee A (2009) Efficient one-pot synthesis of β-hydroxyphosphonates: regioselective nucleophilic ring opening reaction of epoxides with triethyl phosphite catalyzed by Al(OTf)3. Tetrahedron 65:7691–7695

    CAS  Google Scholar 

  84. Hospital A, Meurillon M, Peyrottes S, Perigaud C (2013) An alternative pathway to ribonucleoside β-hydroxyphosphonate analogues and related prodrugs. Org Lett 15:4778–4781

    CAS  Google Scholar 

  85. Schiessl K, Roller A, Hammerschmidt F (2013) Determination of absolute configuration of the phosphonic acid moiety of fosfazinomycins. Org Biomol Chem 11:7420–7426

    CAS  Google Scholar 

  86. Szymanska-Michalak A, Stawinski J, Kraszewski A (2010) Studies on the decomposition pathways of diastereoisomeric mixtures of aryl nucleoside α-hydroxyphosphonates under hydrolytic conditions. Synthesis of α-hydroxyphosphonate monoesters. New J Chem 34:976–983

    CAS  Google Scholar 

  87. Glueck DS (2008) Metal-catalyzed nucleophilic carbon-heteroatom (C-X) bond formation: the role of M-X intermediates. Dalton Trans 39:5276–5286

    Google Scholar 

  88. Xu Y, Zhang J (1986) Stereochemistry at the phosphorus atom during palladium-catalyzed formation of carbon-phosphorus bonds and mechanistic implications. J Chem Soc Chem Commun 21:1606

    Google Scholar 

  89. Xu Y, Wei H, Zhang J, Huang G (1989) An efficient synthesis of chiral, nonracemic isopropyl alkenylmethylphosphinates via palladium route. Tetrahedron Lett 30:949–952

    CAS  Google Scholar 

  90. Johansson T, Stawinski J (2001) Synthesis of dinucleoside pyridylphosphonates involving palladium(0)-catalysed phosphorus-carbon bond formation as a key step. Chem Commun 24:2564–2565

    Google Scholar 

  91. Hirao T, Masunaga T, Yamada N, Ohshiro Y, Agawa T (1982) Palladium-catalyzed new carbon-phosphorus bond formation. Bull Chem Soc Jpn 55:909–913

    CAS  Google Scholar 

  92. Hirao T, Masunaga T, Ohshiro Y, Agawa T (1981) A novel synthesis of dialkyl arenephosphonates. Synthesis 1981:56–57

    Google Scholar 

  93. Belabassi Y, Alzghari S, Montchamp J-L (2008) Revisiting the Hirao cross-coupling: improved synthesis of aryl and heteroaryl phosphonates. J Organomet Chem 693:3171–3178

    CAS  Google Scholar 

  94. Kohler MC, Sokol JG, Stockland RA (2009) Development of a room temperature Hirao reaction. Tetrahedron Lett 50:457–459

    CAS  Google Scholar 

  95. Bessmertnykh A, Douaihy CM, Muniappan S, Guilard R (2008) Efficient palladium-catalyzed synthesis of aminopyridyl phosphonates from bromopyridines and diethyl phosphite. Synthesis-Stuttgart 2008:1575–1579

    Google Scholar 

  96. Luo Y, Wu J (2009) Synthesis of arylphosphonates via palladium-catalyzed coupling reactions of aryl imidazolylsulfonates with H-phosphonate diesters. Organometallics 28:6823–6826

    CAS  Google Scholar 

  97. Tran G, Pardo DG, Tsuchiya T, Hillebrand S, Vors JP, Cossy J (2013) Palladium-catalyzed phosphonylation: synthesis of C3-, C4-, and C5-phosphonylated pyrazoles. Org Lett 15:5550–5553

    CAS  Google Scholar 

  98. Wang P, Lu J, Zhang ZH (2013) An improved procedure for the synthesis of aryl phosphonates by palladium-catalysed cross-coupling of aryl halides and diethyl phosphite in polyethylene glycol. J Chem Res 37:359–361

    CAS  Google Scholar 

  99. Whittaker B, de Lera Ruiz M, Hayes CJ (2008) Stereoselective synthesis of highly functionalised P-stereogenic nucleosides via palladium-catalysed P–C cross-coupling reactions. Tetrahedron Lett 49:6984–6987

    CAS  Google Scholar 

  100. Kalek M, Ziadi A, Stawinski J (2008) Microwave-assisted palladium-catalyzed cross-coupling of aryl and vinyl halides with H-phosphonate diesters. Org Lett 10:4637–4640

    CAS  Google Scholar 

  101. Jablonkai E, Keglevich G (2013) P-ligand-free, microwave-assisted variation of the Hirao reaction under solvent-free conditions; the P-C coupling reaction of >P(O)H species and bromoarenes. Tetrahedron Lett 54:4185–4188

    CAS  Google Scholar 

  102. Bessmertnykh A, Douaihy CM, Guilard R (2009) Direct synthesis of amino-substituted aromatic phosphonates via palladium-catalyzed coupling of aromatic mono- and dibromides with diethyl phosphite. Chem Lett 38:738–739

    CAS  Google Scholar 

  103. Liegault B, Renaud J-L, Bruneau C (2008) Activation and functionalization of benzylic derivatives by palladium catalysts. Chem Soc Rev 37:290–299

    CAS  Google Scholar 

  104. Laven G, Stawinski J (2009) Palladium(0)-catalyzed benzylation of H-phosphonate diesters: an efficient entry to benzylphosphonates. Synlett 2009:225–228

    Google Scholar 

  105. Laven G, Kalek M, Jezowska M, Stawinski J (2010) Preparation of benzylphosphonates via a palladium(0)-catalyzed cross-coupling of H-phosphonate diesters with benzyl halides. Synthetic and mechanistic studies. New J Chem 34:967–975

    CAS  Google Scholar 

  106. Kalek M, Stawinski J (2007) Pd(0)-catalyzed phosphorus-carbon bond formation. Mechanistic and synthetic studies on the role of the palladium sources and anionic additives. Organometallics 26:5840–5847

    CAS  Google Scholar 

  107. Kalek M, Stawinski J (2008) Palladium-catalyzed C-P bond formation: mechanistic studies on the ligand substitution and the reductive elimination. An Intramolecular catalysis by the acetate group in PdII complexes. Organometallics 27:5876–5888

    CAS  Google Scholar 

  108. Kohler MC, Grimes TV, Wang X, Cundari TR, Stockland RA (2009) Arylpalladium phosphonate complexes as reactive intermediates in phosphorus-carbon bond forming reactions. Organometallics 29:1193–1201

    Google Scholar 

  109. Kalek M, Jezowska M, Stawinski J (2009) Preparation of arylphosphonates by palladium(0)-catalyzed cross-coupling in the presence of acetate additives: synthetic and mechanistic studies. Adv Synth Catal 351:3207–3216

    CAS  Google Scholar 

  110. Rat CI, Silvestru C, Breunig HJ (2013) Hypervalent organoantimony and -bismuth compounds with pendant arm ligands. Coord Chem Rev 257:818–879

    CAS  Google Scholar 

  111. Wang T, Sang S, Liu L, Qiao H, Gao Y, Zhao Y (2014) Experimental and theoretical study on palladium-catalyzed C-P bond formation via direct coupling of triarylbismuths with P(O)-H compounds. J Org Chem 79:608–617

    CAS  Google Scholar 

  112. Bedford RB (2003) Palladacyclic catalysts in C-C and C-heteroatom bond-forming reactions. Chem Commun 2003:1787

    Google Scholar 

  113. Xu K, Hu H, Yang F, Wu Y (2013) Synthesis of aryl and arylmethyl phosphonates by cross-coupling of aryl or arylmethyl halides (X = I, Br and Cl) with diisopropyl H-phosphonate. Eur J Org Chem 2013:319–325

    CAS  Google Scholar 

  114. Xu K, Yang F, Zhang G, Wu Y (2013) Palladacycle-catalyzed phosphonation of aryl halides in neat water. Green Chem 15:1055–1060

    CAS  Google Scholar 

  115. Andaloussi M, Lindh J, Savmarker J, Sjoberg PJ, Larhed M (2009) Microwave-promoted palladium(II)-catalyzed C-P bond formation by using arylboronic acids or aryltrifluoroborates. Chem Eur J 15:13069–13074

    CAS  Google Scholar 

  116. Lindh J, Savmarker J, Nilsson P, Sjoberg PJ, Larhed M (2009) Synthesis of styrenes by palladium(II)-catalyzed vinylation of arylboronic acids and aryltrifluoroborates by using vinyl acetate. Chem Eur J 15:4630–4636

    CAS  Google Scholar 

  117. Miao T, Wang L (2014) Palladium-catalyzed desulfitative cross-coupling reaction of sodium arylsulfinates with H-phosphonate diesters. Adv Synth Catal 356:967–971

    CAS  Google Scholar 

  118. Chen X, Engle KM, Wang DH, Yu JQ (2009) Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48:5094–5115

    CAS  Google Scholar 

  119. Colby DA, Bergman RG, Ellman JA (2010) Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem Rev 110:624–655

    CAS  Google Scholar 

  120. Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem Rev 110:1147–1169

    CAS  Google Scholar 

  121. Sun CL, Li BJ, Shi ZJ (2011) Direct C-H transformation via iron catalysis. Chem Rev 111:1293–1314

    CAS  Google Scholar 

  122. Hou CD, Ren YL, Lang R, Hu XX, Xia CG, Li FW (2012) Palladium-catalyzed direct phosphonation of azoles with dialkyl phosphites. Chem Commun 48:5181–5183

    CAS  Google Scholar 

  123. Mi X, Huang M, Zhang J, Wang C, Wu Y (2013) Regioselective palladium-catalyzed phosphonation of coumarins with dialkyl H-phosphonates via C-H functionalization. Org Lett 15:6266–6269

    CAS  Google Scholar 

  124. Xu LM, Li BJ, Yang Z, Shi ZJ (2010) Organopalladium(IV) chemistry. Chem Soc Rev 39:712–733

    CAS  Google Scholar 

  125. Li C, Yano T, Ishida N, Murakami M (2013) Pyridine-directed palladium-catalyzed phosphonation of C(sp2)-H bonds. Angew Chem Int Ed 52:9801–9804

    CAS  Google Scholar 

  126. Feng C-G, Ye M, Xiao K-J, Li S, Yu J-Q (2013) Pd(II)-catalyzed phosphorylation of aryl C − H bonds. J Am Chem Soc 135:9322–9325

    CAS  Google Scholar 

  127. Hoffman-Röder A, Krause N (2004) Synthesis and properties of allenic natural products and pharmaceuticals. Angew Chem Int Ed 43:1196–1216

    Google Scholar 

  128. Krause N, Hashmi ASK (eds) (2004) Modern allene chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  129. Kalek M, Johansson T, Jezowska M, Stawinski J (2010) Palladium-catalyzed propargylic substitution with phosphorus nucleophiles: efficient, stereoselective synthesis of allenylphosphonates and related compounds. Org Lett 12:4702–4704

    CAS  Google Scholar 

  130. Kalek M, Stawinski J (2011) Novel, stereoselective and stereospecific synthesis of allenylphosphonates and related compounds via palladium-catalyzed propargylic substitution. Adv Synth Catal 353:1741–1755

    CAS  Google Scholar 

  131. Jimenez-Halla JO, Kalek M, Stawinski J, Himo F (2012) Computational study of the mechanism and selectivity of palladium-catalyzed propargylic substitution with phosphorus nucleophiles. Chem Eur J 18:12424–12436

    CAS  Google Scholar 

  132. Gelman D, Jiang L, Buchwald SL (2003) Copper-catalyzed C-P bond construction via direct coupling of secondary phosphines and phosphites with aryl and vinyl halides. Org Lett 5:2315–2318

    CAS  Google Scholar 

  133. Fu H, Rao H (2011) Copper-catalyzed coupling reactions. Synlett 2011:745–769

    Google Scholar 

  134. El-Sagheer AH, Brown T (2012) Click nucleic acid ligation: applications in biology and nanotechnology. Accounts Chem Res 45:1258–1267

    CAS  Google Scholar 

  135. Rao H, Jin Y, Fu H, Jiang Y, Zhao Y (2006) A versatile and efficient ligand for copper-catalyzed formation of CN, CO, and PC bonds: pyrrolidine-2-phosphonic acid phenyl monoester. Chem Eur J 12:3636–3646

    CAS  Google Scholar 

  136. Zhuang R, Xu J, Cai Z, Tang G, Fang M, Zhao Y (2011) Copper-catalyzed C-P bond construction via direct coupling of phenylboronic acids with H-phosphonate diesters. Org Lett 13:2110–2113

    CAS  Google Scholar 

  137. Basle O, Li CJ (2009) Copper-catalyzed aerobic phosphonation of sp 3 C-H bonds. Chem Commun 27:4124–4126

    Google Scholar 

  138. Chu LL, Qing FL (2012) Copper-catalyzed aerobic oxidative trifluoromethylation of H-phosphonates using trimethyl(trifluoromethyl)silane. Synthesis 44:1521–1525

    CAS  Google Scholar 

  139. Gao Y, Wang G, Chen L, Xu P, Zhao Y, Zhou Y, Han L-B (2009) Copper-catalyzed aerobic oxidative coupling of terminal alkynes with H-phosphonates leading to alkynylphosphonates. J Am Chem Soc 131:7956–7957

    CAS  Google Scholar 

  140. Liu P, Yang J, Li P, Wang L (2011) An efficient and recyclable silica-supported carbene-Cu(II) catalyst for the oxidative coupling reaction of terminal alkynes with H-phosphonates under base-free reaction conditions. Appl Organomet Chem 25:830–835

    CAS  Google Scholar 

  141. Li X, Yang F, Wu Y, Wu Y (2014) Copper-mediated oxidative decarboxylative coupling of arylpropiolic acids with dialkyl H-phosphonates in water. Org Lett 16:992–995

    CAS  Google Scholar 

  142. Miao W, Gao Y, Li X, Gao Y, Tang G, Zhao Y (2012) Copper-catalyzed synthesis of alkylphosphonates from H-phosphonates and N-tosylhydrazones. Adv Synth Catal 354:2659–2664

    CAS  Google Scholar 

  143. Chen ZS, Zhou ZZ, Hua HL, Duan XH, Luo JY, Wang J, Zhou PX, Liang YM (2013) Reductive coupling reactions: a new strategy for C(sp(3))-P bond formation. Tetrahedron 69:1065–1068

    CAS  Google Scholar 

  144. Wu L, Zhang X, Chen QQ, Zhou AK (2012) A novel copper-catalyzed reductive coupling of N-tosylhydrazones with H-phosphorus oxides. Org Biomol Chem 10:7859–7862

    CAS  Google Scholar 

  145. Wei W, Ji J-X (2011) Catalytic and direct oxyphosphorylation of alkenes with dioxygen and H-phosphonates leading to β-ketophosphonates. Angew Chem Int Ed 50:9097–9099

    CAS  Google Scholar 

  146. Li L, Hao G, Zhu A, Fan X, Zhang G, Zhang L (2013) A copper(I)-catalyzed three-component domino process: assembly of complex 1,2,3-triazolyl-5-phosphonates from azides, alkynes, and H-phosphates. Chem Eur J 19:14403–14406

    CAS  Google Scholar 

  147. Tavs P (1970) Reaktion von arylhalogeniden mit trialkylphosphiten und benzolphosphonigsaure- dialkylestern zu aromatischen phosphonsaureestern und phosphinsaureestern unter nickelsalzkatalyse. Chem Ber 103:2428–2436

    CAS  Google Scholar 

  148. Balthazor TM, Grabiak RC (1980) Nickel-catalyzed Arbuzov reaction: mechanistic observations. J Org Chem 45:5425–5426

    CAS  Google Scholar 

  149. Zhang X, Liu H, Hu X, Tang G, Zhu J, Zhao Y (2011) Ni(II)/Zn catalyzed reductive coupling of aryl halides with diphenylphosphine oxide in water. Org Lett 13:3478–3481

    CAS  Google Scholar 

  150. Zhao YL, Wu GJ, Li Y, Gao LX, Han FS (2012) [NiCl2(dppp)]-catalyzed cross-coupling of aryl halides with dialkyl phosphite, diphenylphosphine oxide, and diphenylphosphine. Chem Eur J 18:9622–9627

    CAS  Google Scholar 

  151. Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita AM, Garg NK, Percec V (2011) Nickel-catalyzed cross-couplings involving carbon-oxygen bonds. Chem Rev 111:1346–1416

    CAS  Google Scholar 

  152. Li BJ, Yu DG, Sun CL, Shi ZJ (2011) Activation of “inert” alkenyl/aryl C-O bond and its application in cross-coupling reactions. Chem Eur J 17:1728–1759

    CAS  Google Scholar 

  153. Shen CR, Yang GQ, Zhang WB (2012) Nickel-catalyzed C-P coupling of aryl mesylates and tosylates with H(O)(PRR2)-R-1. Org Biomol Chem 10:3500–3505

    CAS  Google Scholar 

  154. Hu GB, Chen WZ, Fu TT, Peng ZM, Qiao HW, Gao YX, Zhao YF (2013) Nickel-catalyzed C-P cross-coupling of arylboronic acids with P(O)H compounds. Org Lett 15:5362–5365

    CAS  Google Scholar 

  155. Zhao YL, Wu GJ, Han FS (2012) Ni-catalyzed construction of C-P bonds from electron-deficient phenols via the in situ aryl C-O activation by PyBroP. Chem Commun 48:5868–5870

    CAS  Google Scholar 

  156. Maffei M (2004) Transition metal-promoted syntheses of vinylphosphonates. Curr Org Synth 1:355–375

    CAS  Google Scholar 

  157. Dembitsky VM, Quntar AAA, Haj-Yehia A, Srebnik M (2005) Recent synthesis and transformation of vinylphosphonates. Mini-Rev Org Chem 2:91–109

    CAS  Google Scholar 

  158. Janecki T, Kędzia J, Wąsek T (2009) Michael additions to activated vinylphosphonates. Synthesis 2009:1227–1254

    Google Scholar 

  159. Liu L, Lv Y, Wu YL, Gao X, Zeng ZP, Gao YX, Tang G, Zhao YF (2014) Experimental and theoretical studies on nickel-zinc-catalyzed cross-coupling of gem-dibromoalkenes with P(O)-H compounds. RSC Adv 4:2322–2326

    CAS  Google Scholar 

  160. Han W, Mayer P, Ofial AR (2010) Iron-catalyzed oxidative mono- and bis-phosphonation of N,N-dialkylanilines. Adv Synth Cat 352:1667–1676

    CAS  Google Scholar 

  161. Han W, Ofial AR (2009) Iron-catalyzed dehydrogenative phosphonation of N,N-dimethylanilines. Chem Commun 40:6023–6025

    Google Scholar 

  162. Leca D, Fensterbank L, Lacote E, Malacria M (2005) Recent advances in the use of phosphorus-centered radicals in organic chemistry. Chem Soc Rev 34:858–865

    CAS  Google Scholar 

  163. Marque S, Tordo P (2005) Reactivity of phosphorus centered radicals. Top Curr Chem 250:43–76

    CAS  Google Scholar 

  164. Stiles AR, Vaugha WE, Rust FF (1958) The preparation of dialkyl alkylphosphonates by addition of dialkyl phosphites to olefins. J Am Chem Soc 80:714–717

    CAS  Google Scholar 

  165. Tayama O, Nakano A, Iwahama T, Sakaguchi S, Ishii Y (2004) Hydrophosphorylation of alkenes with dialkyl phosphites catalyzed by Mn(III) under air. J Org Chem 69:5494–5496

    CAS  Google Scholar 

  166. Kagayama T, Nakano A, Sakaguchi S, Ishii Y (2006) Phosphonation of arenes with dialkyl phosphites catalyzed by Mn(II)/Co(II)/O2 redox couple. Org Lett 8:407–409

    CAS  Google Scholar 

  167. Mu X-J, Zou J-P, Qian Q-F, Zhang W (2006) Manganese(III) acetate promoted regioselective phosphonation of heteroaryl compounds. Org Lett 8:5291–5293

    CAS  Google Scholar 

  168. Xu W, Zou J-P, Zhang W (2010) Manganese(III)-mediated direct phosphonylation of arenes. Tetrahedron Lett 51:2639–2643

    CAS  Google Scholar 

  169. Pan XQ, Zou JP, Zhang GL, Zhang W (2010) Manganese(III)-mediated direct phosphonation of arylalkenes and arylalkynes. Chem Commun 46:1721–1723

    CAS  Google Scholar 

  170. Wang GW, Wang CZ, Zou JP (2011) Radical reaction of [60]fullerene with phosphorus compounds mediated by manganese(III) acetate. J Org Chem 76:6088–6094

    CAS  Google Scholar 

  171. Kim SH, Kim SH, Lim CH, Kim JN (2013) An efficient synthesis of 5-phosphorylated uracil derivatives: oxidative cross-coupling between uracil and dialkyl phosphites. Tetrahedron Lett 54:1697–1699

    CAS  Google Scholar 

  172. Sun W-B, Ji Y-F, Pan X-Q, Zhou S-F, Zou J-P, Zhang W, Asekun O (2013) Mn(OAc)3-mediated selective free radical phosphonylation of pyridinones and pyrimidinones. Synthesis 45:1529–1533

    CAS  Google Scholar 

  173. Effenberger F, Kottman H (1985) Oxidative phosphonylation of aromatic compounds. Tetrahedron 41:4171–4182

    CAS  Google Scholar 

  174. Wan B, Wang H, Li X, Wu F (2012) Direct oxidative C-P bond formation of indoles with dialkyl phosphites. Synthesis 44:941–945

    Google Scholar 

  175. Xiang CB, Bian YJ, Mao XR, Huang ZZ (2012) Coupling reactions of heteroarenes with phosphites under silver catalysis. J Org Chem 77:7706–7710

    CAS  Google Scholar 

  176. Mao X, Ma X, Zhang S, Hu H, Zhu C, Cheng Y (2013) Silver-catalyzed highly regioselective phosphonation of arenes bearing electron-withdrawing groups. Eur J Org Chem 2013:4245–4248

    CAS  Google Scholar 

  177. Kim SH, Kim KH, Lim JW, Kim JN (2014) An expedient synthesis of pyrrole-2-phosphonates via direct oxidative phosphorylation and γ-hydroxy-γ-butyrolactams from pyrroles. Tetrahedron Lett 55:531–534

    CAS  Google Scholar 

  178. Xu J, Zhang P, Gao Y, Chen Y, Tang G, Zhao Y (2013) Copper-catalyzed P-arylation via direct coupling of diaryliodonium salts with phosphorus nucleophiles at room temperature. J Org Chem 78:8176–8183

    CAS  Google Scholar 

  179. Hari DP, Konig B (2011) Eosin Y catalyzed visible light oxidative CC and CP bond formation. Org Lett 13:3852–3855

    CAS  Google Scholar 

  180. Dondoni A, Staderini S, Marra A (2013) Efficiency of the free-radical hydrophosphonylation of alkenes: the photoinduced reaction of dimethyl H-phosphonate with enopyranoses as an exemplary case. Eur J Org Chem 2013:5370–5375

    CAS  Google Scholar 

  181. Rueping M, Zhu S, Koenigs RM (2011) Photoredox catalyzed C-P bond forming reactions-visible light mediated oxidative phosphonylations of amines. Chem Commun 47:8679–8681

    CAS  Google Scholar 

  182. Durst HD, Rohrbaugh DK, Munavalli S (2009) Microwave-assisted reaction of dimethyl H-phosphonate with cyclohexene and alkene oxides. Phosphorus Sulfur Silicon Relat Elem 184:2680–2696

    CAS  Google Scholar 

  183. Lopez G, Alaaeddine A, Ameduri B (2013) Radical telomerization of fluorinated alkenes with dialkyl hydrogenophosphonates. Polym Chem 4:3636–3651

    CAS  Google Scholar 

  184. Ananikov VP, Khemchyan LL, Beletskaya IP, Starikova ZA (2010) Acid-free nickel catalyst for stereo- and regioselective hydrophosphorylation of alkynes: synthetic procedure and combined experimental and theoretical mechanistic study. Adv Synth Catal 352:2979–2992

    CAS  Google Scholar 

  185. Ananikov VP, Khemchyan LL, Beletskaya IP (2009) General procedure for the palladium-catalyzed selective hydrophosphorylation of alkynes. Synlett 2009:2375–2381

    Google Scholar 

  186. Fadel A, Legrand F, Evano G, Rabasso N (2011) Highly regio- and stereoselective nickel-catalyzed addition of dialkyl phosphites to ynamides: an efficient synthesis of β-aminovinylphosphonates. Adv Synth Cat 353:263–267

    CAS  Google Scholar 

  187. Ivanova YV, Khemchyan LL, Zalesskii SS, Ananikov VP, Beletskaya IP (2013) Synthesis of alkyl tetraphosphonates: first example of nickel catalyst for H-phosphonates addition to diynes. Russ J Org Chem 49:1099–1107

    CAS  Google Scholar 

  188. Tanaka M (2013) Recent progress in transition metal-catalyzed addition reactions of H-P(O) compounds with unsaturated carbon linkages. Top Organomet Chem 43:167–202

    CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the National Science Centre of Poland (Projects No. 2011/01/B/ST5/06414, 2011/01/B/NZ4/04936, and 2011/03/B/ST5/03102) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michal Sobkowski , Adam Kraszewski or Jacek Stawinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sobkowski, M., Kraszewski, A., Stawinski, J. (2014). Recent Advances in H-Phosphonate Chemistry. Part 2. Synthesis of C-Phosphonate Derivatives. In: Montchamp, JL. (eds) Phosphorus Chemistry II. Topics in Current Chemistry, vol 361. Springer, Cham. https://doi.org/10.1007/128_2014_563

Download citation

Publish with us

Policies and ethics