Skip to main content

Chemical-Catalytic Approaches to the Production of Furfurals and Levulinates from Biomass

  • Chapter
  • First Online:
Book cover Selective Catalysis for Renewable Feedstocks and Chemicals

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 353))

Abstract

The synthesis and chemistry of 5-(hydroxymethyl)furfural (HMF), 5-(chloromethyl)furfural (CMF), and levulinic acid (LA), three carbohydrate-derived platform molecules produced by the chemical-catalytic processing of lignocellulosic biomass, is reviewed. Starting from the historical derivation of these molecules and progressing through modern approaches to their production from biomass feedstocks, this review will then survey their principal derivative chemistries, with particular attention to aspects of commercial relevance, and discuss the relative merits of each molecule in the future of biorefining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dusselier M, Mascal M, Sels BF (2014) Top Curr Chem doi: 10.1007/128_2014_544

  2. Düll G (1895) Action of oxalic acid on inulin. Chem Zeit 19:216–217

    Google Scholar 

  3. Düll G (1895) A derivative of furfuraldehyde from laevulose. Chem Zeit 19:1003–1005

    Google Scholar 

  4. vonEkenstein WA, Blanksma JJ (1910) ω-Hydroxymethylfurfuraldehyde as the cause of certain color reactions of the hexoses. Berichte 43:2355–2361

    CAS  Google Scholar 

  5. Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38

    CAS  Google Scholar 

  6. van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597

    Google Scholar 

  7. Li H, Chang F, Zhang Y, Hu D, Jin L, Song B, Yang S (2012) Recent progress towards transition metal-catalyzed direct conversion of cellulose to 5-hydroxymethylfurfural. Curr Catal 1:221–232

    CAS  Google Scholar 

  8. Tahvildari K, Taghvaei S, Nozari M (2011) The study of hydroxymethylfurfural as a basic reagent for liquid alkanes fuel manufacture from agricultural wastes. Int J Chem Environ Eng 2:62–68

    CAS  Google Scholar 

  9. Dutta S, De S, Saha B (2012) A brief summary of the synthesis of polyester building-block chemicals and biofuels from 5-hydroxymethylfurfural. ChemPlusChem 77:259–272

    CAS  Google Scholar 

  10. Amarasekara AS (2011) 5-Hydroxymethylfurfural based polymers. In: Mittal V (ed) Renewable polymers: synthesis, processing and technology. Wiley-Scrivener, Hoboken, pp 381–428, Chap 9

    Google Scholar 

  11. Karinen R, Vilonen K, Niemelä M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4:1002–1016

    CAS  Google Scholar 

  12. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793

    CAS  Google Scholar 

  13. Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural - a promising biomass-derived building block. Chem Rev 111:397–417

    CAS  Google Scholar 

  14. Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc i:17–54

    Google Scholar 

  15. Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF): a review focusing on its manufacture. Starch 42:314–321

    CAS  Google Scholar 

  16. Anese M, Manzocco L, Calligaris S, Nicoli MC (2013) Industrially applicable strategies for mitigating acrylamide, furan, and 5-hydroxymethylfurfural in food. J Agric Food Chem 61:10209–10214

    CAS  Google Scholar 

  17. Kuster BFM (1977) The influence of water concentration on the dehydration of D-fructose. Carbohydr Res 54:177–183

    CAS  Google Scholar 

  18. Qi X, Watanabe M, Aida TM, Smith RLJ (2008) Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem 10:799–805

    CAS  Google Scholar 

  19. Brown DW, Floyd AJ, Kinsman RG, Roshan-Ali Y (1982) Dehydration reactions of fructose in non-aqueous media. J Chem Technol Biotechnol 32:920–924

    CAS  Google Scholar 

  20. Shimizu K, Uozumi R, Satsuma A (2009) Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catal Commun 10:1849–1853

    CAS  Google Scholar 

  21. Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350

    CAS  Google Scholar 

  22. Gaset A, Rigal L, Paillassa G, Salome J-P, Flèche GRF (1986) Process for manufacturing 5-hydroxymethylfurfural. US 4,590,283 A

    Google Scholar 

  23. Yong G, Zhang Y, Ying JY (2008) Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. Angew Chem Int Ed 47:9345–9348

    CAS  Google Scholar 

  24. Qi X, Guo H, Li L (2011) Efficient conversion of fructose to 5-hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. Ind Eng Chem Res 50:7985–7989

    CAS  Google Scholar 

  25. Nakajima K, Baba Y, Noma R, Kitano M, Kondo JN, Hayashi S, Hara M (2011) Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J Am Chem Soc 133:4224–4227

    CAS  Google Scholar 

  26. Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2–ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101:4179–4186

    CAS  Google Scholar 

  27. Wang C, Fu L, Tong X, Yang Q, Zhang W (2012) Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions. Carbohydr Res 347:182–185

    CAS  Google Scholar 

  28. Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass Bioenerg 35:2659–2665

    CAS  Google Scholar 

  29. Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA (2009) Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A Gen 363:93–99

    CAS  Google Scholar 

  30. Wu S, Fan H, Xie Y, Cheng Y, Wang Q, Zhang Z, Han B (2010) Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water. Green Chem 12:1215–1219

    CAS  Google Scholar 

  31. Benvenuti F, Carlini C, Patrono P, Raspolli Galletti AM, Sbrana G, Massucci MA, Galli P (2000) Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates. Appl Catal A Gen 193:147–153

    CAS  Google Scholar 

  32. Yang F, Liu Q, Yue M, Bai X, Du Y (2011) Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Chem Commun 47:4469–4471

    CAS  Google Scholar 

  33. Hu S, Zhang Z, Zhou Y, Song J, Fan H, Han B (2009) Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chem 11:873–877

    CAS  Google Scholar 

  34. Yin S, Pan Y, Tan Z (2011) Hydrothermal conversion of cellulose to 5-hydroxymethylfurfural. Int J Green Energy 8:234–247

    CAS  Google Scholar 

  35. Zhao S, Cheng M, Li J, Tian J, Wang X (2011) One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted-Lewis-surfactant-combined heteropolyacid catalyst. Chem Commun 47:2176–2178

    CAS  Google Scholar 

  36. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985

    CAS  Google Scholar 

  37. McNeff CV, Nowlan DT, McNeff LC, Yan B, Fedie RL (2010) Continuous production of 5-hydroxymethylfurfural from simple and complex carbohydrates. Appl Catal A Gen 384:65–69

    CAS  Google Scholar 

  38. Zhang Y, Du H, Qian X, Chen EY-X (2010) Ionic liquid−water mixtures: enhanced Kw for efficient cellulosic biomass conversion. Energy Fuels 24:2410–2417

    CAS  Google Scholar 

  39. Snyder FH (1958) Preparation of hydroxymethylfurfural from cellulosic materials. US 2,851,468 A

    Google Scholar 

  40. Daengprasert W, Boonnoun P, Laosiripojana N, Goto M, Shotipruk A (2011) Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural. Ind Eng Chem Res 50:7903–7910

    CAS  Google Scholar 

  41. Dedsuksophon W, Faungnawakij K, Champreda V, Laosiripojana N (2011) Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic biomass and biomass-derived carbohydrates in the presence of Pd/WO3–ZrO2 in a single reactor. Bioresour Technol 102:2040–2046

    CAS  Google Scholar 

  42. Li L, Li L, Wang Y, Du Y, Qin S (2013) Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol Lett 35:471–477

    CAS  Google Scholar 

  43. Nasab EE, Habibi-Rezaei M, Khaki A, Balvardi M (2009) Investigation on acid hydrolysis of inulin: a response surface methodology approach. Int J Food Eng 5: Article 12

    Google Scholar 

  44. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600

    CAS  Google Scholar 

  45. Gericke M, Fardim P, Heinze T (2012) Ionic liquids – promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    Google Scholar 

  46. Hu C, Yang Y, Yan H, Xiang X, Tong D, Zhu L, Li G (2009) Preparation of 5-acetoxymethylfurfural from carbohydrates. Faming Zhuanli Shenqing Gongkai Shuomingshu: CN 10163331 A

    Google Scholar 

  47. Rauchfuss TB, Thananatthanachon T (2011) Efficient method for preparing 2,5-dimethylfuran. US Pat Appl 20110263880 A1

    Google Scholar 

  48. Casanova O, Iborra S, Corma A (2010) Chemicals from biomass: etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5'(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts. J Catal 275:236–242

    CAS  Google Scholar 

  49. Sanda K, Rigal L, Gaset A (1989) Synthesis of 5-(bromomethyl)- and of 5-(chloromethyl)-2-furancarboxaldehyde. Carbohydr Res 187:15–23

    CAS  Google Scholar 

  50. Bredihhin A, Maeorg U, Vares L (2013) Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural. Carbohydr Res 375:63–67

    CAS  Google Scholar 

  51. Cukalovic A, Stevens CV (2010) Production of biobased HMF derivatives by reductive amination. Green Chem 12:1201–1206

    CAS  Google Scholar 

  52. Arias KS, Al-Resayes SI, Climent MJ, Corma A, Iborra S (2013) From biomass to chemicals: synthesis of precursors of biodegradable surfactants from 5-hydroxymethylfurfural. ChemSusChem 6:123–131

    CAS  Google Scholar 

  53. Balakrishnan M, Sacia ER, Bell AT (2012) Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem 14:1626–1634

    CAS  Google Scholar 

  54. Gandini A, Belgacem MN (1997) Furans in polymer chemistry. Prog Polym Sci 22:1203–1379

    CAS  Google Scholar 

  55. Gandini A, Belgacem NM (1998) Recent advances in the elaboration of polymeric materials derived from biomass components. Polym Int 47:267–276

    CAS  Google Scholar 

  56. Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L, Liu S (2012) Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances 2:11184–11206

    CAS  Google Scholar 

  57. Elhajj T, Masroua A, Martin JC, Descotes G (1987) Synthese de l’hydroxymethyl-5-furanne carboxaldehyde-2 et de ses derives par traitement acide de sucres sur resines echangeuses d’ions. Bull Soc Chim Fr 5:855–860

    Google Scholar 

  58. Amarasekara AS, Green D, McMillan E (2008) Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)–salen catalysts. Catal Commun 9:286–288

    CAS  Google Scholar 

  59. Mehdi H, Bodor A, Lantos D, Horvath IT, DeVos DE, Binnemans K (2007) Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions. J Org Chem 72:517–524

    Google Scholar 

  60. Yoon H-J, Choi J-W, Jang, H-S, Cho JK, Byun J-W, Chung W-J, Lee S-M, Lee Y-S (2011) Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by polymer-supported IBX amide. SynLett 165–168

    Google Scholar 

  61. Cottier L, Descotes G, Lewkowski J, Skowronski R (1995) Ultrasonically accelerated syntheses of furan-2,5-dicarbaldehyde from 5-hydroxymethyl-2-furfural. Org Prep Proc Int 27:564–566

    CAS  Google Scholar 

  62. Yadav GD, Sharma RV (2014) Biomass derived chemicals: environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Appl Catal B Environ 147:293–301

    CAS  Google Scholar 

  63. Nie J, Xie J, Liu H (2013) Activated carbon-supported ruthenium as an efficient catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Chinese J Catal 34:871–875

    CAS  Google Scholar 

  64. Nie J, Xie J, Liu H (2013) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. J Catal 301:83–91

    CAS  Google Scholar 

  65. Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee K-Y, Cho JK (2013) Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem 19:1056–1059

    CAS  Google Scholar 

  66. Nie J, Liu H (2012) Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported vanadium oxide catalysts: structural effect and reaction mechanism. Pure Appl Chem 84:765–777

    CAS  Google Scholar 

  67. Halliday GA, Young RJ, Grushin VV (2003) One-pot, two-step, practical catalytic synthesis of 2,5-diformylfuran from fructose. Org Lett 5:2003–2005

    CAS  Google Scholar 

  68. Takagaki A, Takahashi M, Nishimura S, Ebitani K (2011) One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catal 1:1562–1565

    CAS  Google Scholar 

  69. Xiang X, He L, Yang Y, Guo B, Tong D, Hu C (2011) A one-pot two-step approach for the catalytic conversion of glucose into 2,5-diformylfuran. Catal Lett 141:735–741

    CAS  Google Scholar 

  70. Casanova O, Iborra I, Corma A (2009) Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem 2:1138–1144

    CAS  Google Scholar 

  71. Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ (2011) Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal Today 160:55–60

    CAS  Google Scholar 

  72. Pasini T, Piccinini M, Blosi M, Bonelli R, Albonetti S, Dimitratos N, Lopez-Sanchez JA, Sankar M, He Q, Kiely CJ, Hutchings GJ, Cavani F (2011) Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chem 13:2091–2099

    CAS  Google Scholar 

  73. de Jong E, Dam MA, Sipos L, Gruter G-JM (2012) Furandicarboxylic acid (FDCA), a versatile building block for a very interesting class of polyesters. In: Smith PB, Gross RA (eds) Biobased monomers, polymers, and materials, ACS Symp Ser, Vol. 1105, Chapter 1, pp. 1–13

    Google Scholar 

  74. Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A Gen 385:1–13

    CAS  Google Scholar 

  75. Lew BW (1967) Method of producing dehydromucic acid. US 3,326,944 A

    Google Scholar 

  76. Zope BN, Davis SE, Davis RJ (2012) Influence of reaction conditions on diacid formation during Au-catalyzed oxidation of glycerol and hydroxymethylfurfural. Top Catal 55:24–32

    CAS  Google Scholar 

  77. Lilga MA, Hallen RT, Gray M (2010) Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF). Top Catal 53:1264–1269

    CAS  Google Scholar 

  78. Casanova O, Iborra S, Corma A (2009) Biomass into chemicals: one pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J Catal 265:109–116

    CAS  Google Scholar 

  79. Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30

    CAS  Google Scholar 

  80. Cottier L, Descotes G, Soro Y (2003) Heteromacrocycles from ring-closing metathesis of unsaturated furanic ethers. Synth Commun 33:4285–4295

    CAS  Google Scholar 

  81. Lichtenthaler FW, Brust A, Cuny E (2001) Sugar-derived building blocks. Part 26. Hydrophilic pyrroles, pyridazines and diazepinones from D-fructose and isomaltulose. Green Chem 3:201–209

    CAS  Google Scholar 

  82. Goswami S, Dey S, Jana S (2008) Design and synthesis of a unique ditopic macrocyclic fluorescent receptor containing furan ring as a spacer for the recognition of dicarboxylic acids. Tetrahedron 64:6358–6363

    CAS  Google Scholar 

  83. Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2013) Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chem Commun 49:7034–7036

    CAS  Google Scholar 

  84. Ohyama J, Esaki A, Yamamoto Y, Arai S, Satsuma A (2013) Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2,5-bis(hydroxymethyl)furan over gold sub-nano clusters RSC Adv 3:1033–1036

    Google Scholar 

  85. Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chem Int Ed 49:6616–6618

    CAS  Google Scholar 

  86. Hansen TS, Barta K, Anastas PT, Ford PC, Riisager A (2012) One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chem 14:2457–2461

    CAS  Google Scholar 

  87. Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985

    CAS  Google Scholar 

  88. Zu Y, Yang P, Wang J, Liu X, Ren J, Lu G, Wang Y (2014) Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Appl Catal B Environ 146:244–248

    CAS  Google Scholar 

  89. Chen G, Shen Y, Zhang Q, Yao M, Zheng Z, Liu H (2013) Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends. Energy 54:333–342

    CAS  Google Scholar 

  90. Brandvold TA (2010) Carbohydrate route to para-xylene and terephthalic acid. US 20100331568 A1

    Google Scholar 

  91. Masuno MN, Bissell J, Smith RL, Higgins B, Wood AB, Foster M (2012) Utilizing a multiphase reactor for the conversion of biomass to produce substituted furans. WO 2012170520 A1

    Google Scholar 

  92. Shiramizu M, Toste FD (2011) On the Diels–Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene. Chem Eur J 17:12452–12457

    CAS  Google Scholar 

  93. Williams CL, Chang C-C, Do P, Nikbin N, Caratzoulas S, Vlachos DG, Lobo RF, Fan W, Dauenhauer PJ (2012) Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal 2:935–939

    CAS  Google Scholar 

  94. Nakagawa Y, Tomishige K (2010) Total hydrogenation of furan derivatives over silica-supported Ni-Pd alloy catalyst. Catal Commun 12:154–156

    CAS  Google Scholar 

  95. Yao S, Wang X, Jiang Y, Wu F, Chen X, Mu X (2014) One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2,6-hexanetriol over Ni-Co-Al mixed oxide catalysts under mild conditions. ACS Sustainable Chem Eng 2:173–180

    CAS  Google Scholar 

  96. Alamillo R, Tucker M, Chia M, Pagan-Torres Y, Dumesic J (2012) The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem 14:1413–1419

    CAS  Google Scholar 

  97. Grochowski MR, Yang W, Sen A (2012) Mechanistic study of a one-step catalytic conversion of fructose to 2,5-dimethyltetrahydrofuran. Chem Eur J 18:12363–12371

    CAS  Google Scholar 

  98. Yang W, Sen A (2010) One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuel. ChemSusChem 3:597–603

    CAS  Google Scholar 

  99. Chheda JN, Dumesic JA (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal Today 123:59–70

    CAS  Google Scholar 

  100. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450

    CAS  Google Scholar 

  101. Liu D, Chen EY-X (2013) Diesel and alkane fuels from biomass by organocatalysis and metal-acid tandem catalysis. ChemSusChem 6:2236–2239

    CAS  Google Scholar 

  102. Sutton AD, Waldie FD, Wu R, Schlaf M, ‘Pete’ Silks (III) LA, Gordon JC (2013) The hydrodeoxygenation of bioderived furans into alkanes. Nature Chem 5:428–432

    CAS  Google Scholar 

  103. Virent, Inc. http://www.virent.com. Accsessed Jan 14, 2014

  104. Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8:701–709

    CAS  Google Scholar 

  105. Boussie TR, Dias EL, Fresco ZM, Murphy VJ, Shoemaker J, Archer R, Jiang H (2010) Production of adipic acid and derivatives from carbohydrate-containing materials. US 20,100,317,823 A1

    Google Scholar 

  106. Cottier L, Descotes G, Eymard L, Rapp K (1995) Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride. Synthesis 303–306

    Google Scholar 

  107. Marisa C, Ilaria D, Marotta R, Roberto A, Vincenzo C (2010) Production of 5-hydroxy-4-keto-2-pentenoic acid by photo-oxidation of 5-hydroxymethylfurfural with singlet oxygen: a kinetic investigation. J Photochem Photobiol A 210:69–76

    Google Scholar 

  108. Fenton HJH, Gostling M (1899) Bromomethylfurfuraldehyde. J Chem Soc Trans 75:423–433

    Google Scholar 

  109. Fenton HJH, Gostling M (1901) Derivatives of methylfurfural. J Chem Soc Trans 79:807–816

    CAS  Google Scholar 

  110. Fischer E, von Neyman H (1914) Notiz über ω-chlormethyl- und athoxymethyl-furfurol. Chem Ber 47:973–977

    CAS  Google Scholar 

  111. Hibbert H, Hill HS (1923) Studies on cellulose chemistry II. The action of dry hydrogen bromide on carbohydrates and polysaccharides. J Am Chem Soc 45:176–182

    CAS  Google Scholar 

  112. Haworth WN, Jones WGM (1944) The conversion of sucrose into furan compounds. Part 1. 5-Hydroxymethylfurfuraldehyde and some derivatives. J Chem Soc 667–670

    Google Scholar 

  113. Hamada K, Suzukamo G, Nagase T (1978) Furaldehydes. Ger Offen DE 2745743

    Google Scholar 

  114. Szmant HH, Chundury DD (1981) The preparation of 5-chloromethylfurfuraldehyde from high fructose corn syrup and other carbohydrates. J Chem Technol Biotechnol 31:205–212

    CAS  Google Scholar 

  115. Hamada K, Suzukamo G, Fujisawa K (1982) 5-Methylfurfural. EP44186A119820120

    Google Scholar 

  116. Hamada K, Yoshihara H, Suzukamo G (1982) An improved method for the conversion of saccharides into furfural derivatives. Chem Lett 617–618

    Google Scholar 

  117. Hamada K, Yoshihara H, Suzukamo G (1983) 5-Halomethylfurfural. EP 79206A1 19830578

    Google Scholar 

  118. Sanda K, Rigal L, Gaset A (1992) Optimisation of the synthesis of 5-chloromethyl-2-furancarboxaldehyde from D-fructose dehydration and in-situ chlorination of 5-hydroxymethyl-2-furancarboxaldehyde. J Chem Technol Biotechnol 55:139–145

    CAS  Google Scholar 

  119. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47:7924–7926

    CAS  Google Scholar 

  120. Mascal M (2009) High-yield conversion of cellulosic biomass into furanic biofuels and value-added products. US 7,829,732

    Google Scholar 

  121. Mascal M, Nikitin EB (2009) Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. ChemSusChem 2:859–861

    CAS  Google Scholar 

  122. Mascal M, Nikitin EB (2010) Co-processing of carbohydrates and lipids in oil crops to produce a hybrid biodiesel. Energy Fuels 24:2170–2171

    CAS  Google Scholar 

  123. Brasholz M, von Känel K, Hornung CH, Saubern S, Tsanaktsidis J (2011) Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chem 13:1114–1117

    CAS  Google Scholar 

  124. Breeden SW, Clark JH, Farmer TJ, Macquarrie DJ, Meimoun JS, Nonne Y, Reid JESJ (2013) Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural. Green Chem 15:72–75

    Google Scholar 

  125. Gao W, Li Y, Xiang Z, Chen K, Yang R, Argyropoulos DS (2013) Efficient one-pot synthesis of 5-chloromethylfurfural (CMF) from carbohydrates in mild biphasic systems. Molecules 18:7675–7685

    CAS  Google Scholar 

  126. Jadhav H, Pedersen CM, Solling T, Bols M (2011) 3-Deoxyglucosone is an intermediate in the formation of furfurals from D-glucose. ChemSusChem 4:1049–1051

    CAS  Google Scholar 

  127. Kumari N, Olesen JK, Pedersen CM, Bols M (2011) Synthesis of 5-bromomethylfurfural from cellulose as a potential intermediate for biofuel. Eur J Org Chem 1266–1270

    Google Scholar 

  128. Yang W, Grochowski MR, Sen A (2012) Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen. ChemSusChem 5:1218–1222

    CAS  Google Scholar 

  129. Tarabanko VE, Chernyak MY, Morozov AA, Kaigorodov KL (2013) Method of producing 5-fluoromethyl furfural. RU 2,478,097

    Google Scholar 

  130. Gilpin JA (1984) Inhibitors for furfurals. US 4433155 A

    Google Scholar 

  131. Kawai S, Tanaka S, Terai K, Tezuka M, Nishiwaki T (1960) Synthesis of 1,4,7-cyclononanetrione. Bull Chem Soc Jpn 33:669–674

    CAS  Google Scholar 

  132. Mascal M, Nikitin EB (2010) High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chem 12:370–373

    CAS  Google Scholar 

  133. Liu G, Wu J, Zhang IY, Chen Z-N, Li Y-W, Xu X (2011) Theoretical studies on thermochemistry for conversion of 5-chloromethylfurfural into valuable chemicals. J Phys Chem A 115:13628–13641

    CAS  Google Scholar 

  134. Rinke IJ (1934) 5-Methylfurfural. Org Synth 14:62

    Google Scholar 

  135. Hamada K, Yoshihara H, Suzukamo G (2001) Novel synthetic route to 2,5-disubstituted furan derivatives through surface active agent-catalyzed dehydration of D(−)-fructose. J Oleo Sci 50:533–536

    CAS  Google Scholar 

  136. Mikochik P, Cahana A (2012) Conversion of 5-(chloromethyl)-2-furaldehyde into 5-methyl-2-furoic acid and derivatives thereof. EP 2,606,039 A1

    Google Scholar 

  137. xftechnologies.com/technology/products/(Accessed Jan17, 2014)

    Google Scholar 

  138. Shi Y, Brenner P, Bertsch S, Radacki K, Dewhurst RD (2012) η3-Furfuryl and η3-thienyl complexes of palladium and platinum of relevance to the functionalization of biomass-derived furans. Organometallics 31:5599–5605

    CAS  Google Scholar 

  139. Fenton HJH, Robinson F (1909) Homologues of furfuraldehyde. J Chem Soc Trans 95:1334–1340

    CAS  Google Scholar 

  140. Zhou X, Rauchfuss TB (2013) Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent. ChemSusChem 6:383–388

    CAS  Google Scholar 

  141. Szmant HH, Chundury D (1981) Preparation of polymeric building blocks from 5-hydroxymethyl- and 5-chloromethylfurfuraldehyde. Ind Eng Chem Prod Res Dev 20:158–163

    Google Scholar 

  142. Jira R, Bräunling H (1987) Synthesis of polyarenemethines, a new class of conducting polymers. Synth Met 17:691–696

    CAS  Google Scholar 

  143. Elix JA (1969) Synthesis and properties of annulene polyoxides. Aus J Chem 22:1951–1962

    CAS  Google Scholar 

  144. Nickl J, Naarmann H, Moehwald H (1985) Use of polyheterocyclic compounds of a certain structure as electrode material. Ger Patent DE 3409655 A1

    Google Scholar 

  145. Timko JM, Cram DJ (1974) Furanyl unit in host compounds. J Am Chem Soc 96:7159–7160

    CAS  Google Scholar 

  146. Silks LA, Gordon JC, Wu R, Hanson SK (2011) Method of carbon chain extension using novel aldol reaction. US Pat Appl 20110040109 A1

    Google Scholar 

  147. Seck KA (2013) Biorefinery for conversion of carbohydrates and lignocellulosics via primary hydrolysate CMF to liquid fuels. WO 2013122686 A2

    Google Scholar 

  148. Cooper WF, Nuttall WH (1912) Furane-2,5-dialdehyde. J Chem Soc Trans 101:1074–1081

    CAS  Google Scholar 

  149. Florentino HQ, Hernandez-Benitez RI, Avina JA, Burgueno-Tapia E, Tamariz J (2011) Total synthesis of naturally occurring furan compounds 5-{[(4-hydroxybenzyl)oxy]methyl}-2-furaldehyde and pichiafuran C. Synthesis 1106–1112

    Google Scholar 

  150. Klein LL, Shanklin MS (1988) Total synthesis of dimethyl jaconate. J Org Chem 53:5202–5209

    CAS  Google Scholar 

  151. Zhou F, Zheng J, Dong X, Zhang Z, Zhao L, Sha X, Li L, Wen R (2007) Synthesis and antitumor activities of 3-substituted 1- (5-formylfurfuryl) indolin-2-one derivatives. Lett Org Chem 4:601–605

    CAS  Google Scholar 

  152. Dai H-L, Gao L-X, Yang Y, Li J-Y, Cheng J-G, Li J, Wen R, Peng YQ, Zhang, J-B (2012) Discovery of di-indolinone as a novel scaffold for protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 22:7440–7443

    Google Scholar 

  153. Dai H-L, Shen Q, Zheng J-B, Li J-Y, Wen R, Li J (2011) Synthesis and biological evaluation of novel indolin-2-one derivatives as protein tyrosine phosphatase 1B inhibitors. Lett Org Chem 8:526–530

    CAS  Google Scholar 

  154. Mascal M, Dutta S (2011) Synthesis of the natural herbicide δ-aminolevulinic acid from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:40–41

    CAS  Google Scholar 

  155. Price BJ, Clitherow JW, Bradshaw J (1978) Aminoalkyl furan derivatives. US 4,128,658

    Google Scholar 

  156. Mascal M, Dutta S (2011) Synthesis of ranitidine (Zantac) from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:3101–3102

    CAS  Google Scholar 

  157. Chang F, Dutta S, Becnel JJ, Estep AS, Mascal M (2014) Synthesis of the insecticide prothrin and its analogues from biomass-derived 5-(chloromethyl)furfural. J Agric Food Chem 62:476–480

    CAS  Google Scholar 

  158. von Grote AF, Tollens B (1875) Untersuchungen uber kohlenhydrate. I. ueber die bei einwirkung von schwefelsäure auf zucker entstehende säure (levulinsäure). Liebigs Ann Chem 175:181–204

    Google Scholar 

  159. Malaguti (1836) Ueber die einwirkung der verdünnten säuren aus den gemeinen zucker. Liebigs Annalen 17:52–67

    Google Scholar 

  160. Mulder GJ (1840) Untersuchungen über die humussubstanzen. J Prakt Chem 21:321–370

    Google Scholar 

  161. Conrad M (1878) Ueber acetopropionsäure und ihre identität mit levulinsäure. Berichte 11:2177–2179

    Google Scholar 

  162. McKenzie BF (1929) Levulinic acid. Org Synth 9:50

    CAS  Google Scholar 

  163. Thomas RW, Schuette HA (1931) Studies on levulinic acid. I. Its preparation from carbohydrates by digestion with hydrochloric acid under pressure. J Am Chem Soc 53:2324–2328

    CAS  Google Scholar 

  164. Dahlmann J (1968) Preparation of levulinic acid. Chem Ber 101:4251–4253

    CAS  Google Scholar 

  165. Ploetz T (1941) The formation of levulinic acid from carbohydrates. Naturwissenschaften 29:707–708

    CAS  Google Scholar 

  166. Pummerer R, Guyot O, Birkofer L (1935) Mechanism of levulinic acid formation from hexoses. II. A hydroxyl-free glucosan-like substance. Berichte 68B:480–493

    CAS  Google Scholar 

  167. Isbell HS (1944) Interpretation of some reactions in the carbohydrate field in terms of consecutive electron displacement. J Res Nat Bur Stand 32:45–59

    CAS  Google Scholar 

  168. Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26:2111–2114

    CAS  Google Scholar 

  169. Galletti AMR, Antonetti C, De Luise V, Valentini G (2011) Conversion of biomass to levulinic acid, a new feedstock for the chemical industry. Chimica e l’Industria 93:112–117

    CAS  Google Scholar 

  170. Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin 5:198–214

    CAS  Google Scholar 

  171. Saladino R, Pagliaccia T, Argyropoulos DS, Crestini C (2007) Production of chemicals from cellulose and biomass-derived compounds: advances in the oxidative functionalization of levulinic acid. ACS Symp Ser 954:262–279

    CAS  Google Scholar 

  172. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2006) The Biofine process - production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries - industrial processes and products. Wiley-VCH, Weinheim, pp 139–164

    Google Scholar 

  173. Timokhin BV, Baransky VA, Eliseeva GD (1999) Levulinic acid in organic synthesis. Russ Chem Rev 68:73–84

    CAS  Google Scholar 

  174. Efremov AA, Pervyshina GG, Kuznetsov BN (1998) Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts. Chem Nat Compd 34:182–185

    CAS  Google Scholar 

  175. Efremov AA, Pervyshina GG, Kuznetsov BN (1997) Thermocatalytic transformations of wood and cellulose in the presence of HCl, HBr, and H2SO4. Chem Nat Compd 33:84–88

    CAS  Google Scholar 

  176. Farone WA, Cuzens JE (2000) Method for the production of levulinic acid and its derivatives. US 6,054,611 A

    Google Scholar 

  177. Fitzpatrick SW (1997) Production of levulinic acid from carbohydrate-containing materials. US 5,608,105 A

    Google Scholar 

  178. Chang C, Cen P, Ma X (2007) Levulinic acid production from wheat straw. Bioresour Technol 98:1448–1453

    CAS  Google Scholar 

  179. Yan L, Yang N, Pang H, Liao B (2008) Production of levulinic acid from bagasse and paddy straw by liquefaction in the presence of hydrochloride acid. Clean 36:158–163

    CAS  Google Scholar 

  180. Fang Q, Hanna MA (2002) Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresour Technol 81:187–192

    CAS  Google Scholar 

  181. Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour Technol 99:8367–8375

    CAS  Google Scholar 

  182. Ramos-Rodriguez E (1972) Process for jointly producing furfural and levulinic acid from bagasse and other lignocellulosic materials. US 3701789 A

    Google Scholar 

  183. Carlson LJ (1962) Process for the manufacture of levulinic acid. US 3,065,263 A

    Google Scholar 

  184. Sassenrath CP, Shilling WL (1966) Preparation of levulinic acid from hexose-containing material. US 3258481 A

    Google Scholar 

  185. Jeong G-T, Park D-H (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Appl Biochem Biotechnol 161:41–52

    CAS  Google Scholar 

  186. Top value added chemicals from biomass. Vol I, PNNL and the National Renewable Energy Laboratory (http://www1.eere.energy.gov/biomass/pdfs/35523.pdf)

  187. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554

    CAS  Google Scholar 

  188. Bart HJ, Reidetschlager J, Schatka K, Lehmann A (1994) Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Ind Eng Chem Res 33:21–25

    CAS  Google Scholar 

  189. Maheria KC, Kozinski J, Dalai A (2013) Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites. Catal Lett 143:1220–1225

    CAS  Google Scholar 

  190. Fernandes DR, Rocha AS, Mai EF, Mota CJA, Teixeira da Silva V (2012) Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl Catal A Gen 425–426:199–204

    Google Scholar 

  191. Fagan PJ, Korovessi E, Manzer LE, Mehta R, Thomas SM (2003) Preparation of levulinic acid esters and formic acid esters from biomass and olefins. WO 2,003,085,071 A1

    Google Scholar 

  192. Manzer LE (2005) Preparation of levulinic acid esters from alpha-angelica lactone and alcohols. WO 2,005,097,724 A1

    Google Scholar 

  193. Christensen E, Williams A, Paul S, Burton S, McCormick RL (2011) Properties and performance of levulinate esters as diesel blend components. Energy Fuels 25:5422–5428

    CAS  Google Scholar 

  194. Windom BC, Lovestead TM, Mascal M, Nikitin EB, Bruno TJ (2011) Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel. Energy Fuels 25:1878–1890

    CAS  Google Scholar 

  195. Zhang J, Wu S, Li B, Zhang H (2012) Advances in the catalytic production of valuable levulinic acid derivatives. ChemCatChem 4:1230–1237

    CAS  Google Scholar 

  196. Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584–595

    CAS  Google Scholar 

  197. Corbel-Demailly L, Ly B-K, Minh D-P, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C (2013) Heterogeneous catalytic hydrogenation of biobased levulinic and succinic acids in aqueous solutions. ChemSusChem 6:2388–2395

    CAS  Google Scholar 

  198. Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem Int Ed 49:5510–5514

    CAS  Google Scholar 

  199. Geilen FMA, Engendahl B, Holscher M, Klankermayer J, Leitner W (2011) Selective homogeneous hydrogenation of biogenic carboxylic acids with [Ru(TriPhos)H]+: a mechanistic study. J Am Chem Soc 133:14349–14358

    CAS  Google Scholar 

  200. Pace V, Hoyos P, Castoldi L, Dominguez de Maria P, Alcantara AR (2012) 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry. ChemSusChem 5:1369–1379

    CAS  Google Scholar 

  201. Du X-L, Bi Q-Y, Liu Y-M, Cao Y, He H-Y, Fan K-N (2012) Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chem 14:935–939

    CAS  Google Scholar 

  202. Haskelberg L (1948) Some derivatives of levulinic acid. J Am Chem Soc 70:2830–2831

    CAS  Google Scholar 

  203. Lukes R, Koblicova Z, Blaha K (1963) Reaction of angelica lactones with amines. Collect Czech Chem Commun 28:2182–2198

    CAS  Google Scholar 

  204. Celmer WD, Solomons IA (1963) 1,5-Dimethyl-2-oxo-3-pyrrolidineglyoxylic acid. J Org Chem 28:3221–3222

    Google Scholar 

  205. Frank RL, Schmitz WR, Zeidman B (1947) 1,5-Dimethyl-2-pyrrolidone. Org Synth 27:28

    CAS  Google Scholar 

  206. Manzer LE (2005) Production of 5-methyl-N-(methylaryl)-2-pyrrolidone, 5-methyl-N-(methylcycloalkyl)-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid with cyano compounds. WO 2,004,085,048 A3

    Google Scholar 

  207. Shilling WL (1966) Making lactams by the vapor phase reductive amination of oxo carboxylic acid compounds US 3235562 A

    Google Scholar 

  208. Wei Y, Wang C, Jiang X, Xue D, Li J, Xiao J (2013) Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. Chem Commun 49:5408–5410

    CAS  Google Scholar 

  209. Wei Y, Wang C, Jiang X, Xue D, Liu Z-T, Xiao J (2014) Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chem 16:1093–1096

    Google Scholar 

  210. Leibig C, Mullen B, Mullen T, Rieth L, Badarinarayana V (2011) Cellulosic-derived levulinic ketal esters: a new building block. ACS Symp Ser 1063:111–116

    CAS  Google Scholar 

  211. Desai S (2010) Building blocks for a greener industry. Chem Ind London 21–23

    Google Scholar 

  212. www.segetis.com (Accessed Jan17, 2014)

  213. Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Grosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49:4479–4483

    CAS  Google Scholar 

  214. Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Catalytic upgrading of levulinic acid to 5-nonanone. Green Chem 12:574–577

    CAS  Google Scholar 

  215. West RM, Liu ZY, Peter M, Dumesic JA (2008) Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem 1:417–424

    CAS  Google Scholar 

  216. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114

    CAS  Google Scholar 

  217. Mascal M, Dutta S, Gandarias I (2014) The angelica lactone dimer as a renewable feedstock for hydrodeoxygenation: simple, high-yield synthesis of branched C7‒C10 gasoline-like hydrocarbons. Angew Chem Int Ed 53:1854–1857

    Google Scholar 

  218. Case PA, van Heiningen ARP, Wheeler MC (2012) Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures. Green Chem 14:85–89

    CAS  Google Scholar 

  219. Wong PK, Li C, Stubbs L, Vanmeurs M, AnakKumbang DG, Lim CY, Drent E (2012) Synthesis of diacids. WO 2,012,134,397 A1

    Google Scholar 

  220. Bond JQ, Alonso DM, West RM, Dumesic JA (2010) γ-Valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water. Langmuir 26:16291–16298

    CAS  Google Scholar 

  221. Grosselin J-M, Denis P, Metz F, Delis P (1992) Process for preparing adipic acid by hydrocarboxylation of pentenoic acids. EP 0,493,273 B1

    Google Scholar 

  222. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95

    CAS  Google Scholar 

  223. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28:227–239

    Google Scholar 

  224. Dunlop AP, Shelbert S (1954) Preparation of succinic acid. US 2,676,186 A

    Google Scholar 

  225. Van Es DS, Van der Klis F, Van Haveren J (2012) Succinic acid from biomass. WO 2,012,044,168 A1

    Google Scholar 

  226. Podolean I, Kuncser V, Gheorghe N, Macovei D, Parvulescu VI, Coman SM (2013) Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem 15:3077–3082

    CAS  Google Scholar 

  227. Ha H-J, Lee S-K, Ha Y-J, Park J-W (1994) Selective bromination of ketones. A convenient synthesis of 5-aminolevulinic acid. Synth Commun 24:2557–2562

    CAS  Google Scholar 

  228. Manny AJ, Kjelleberg S, Kumar N, de Nys R, Read RW, Steinberg P (1997) Reinvestigation of the sulfuric acid-catalysed cyclisation of brominated 2-alkyllevulinic acids to 3-alkyl-5-methylene-2(5H)-furanones. Tetrahedron 53:15813–15826

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mascal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mascal, M., Dutta, S. (2014). Chemical-Catalytic Approaches to the Production of Furfurals and Levulinates from Biomass. In: Nicholas, K. (eds) Selective Catalysis for Renewable Feedstocks and Chemicals. Topics in Current Chemistry, vol 353. Springer, Cham. https://doi.org/10.1007/128_2014_536

Download citation

Publish with us

Policies and ethics