Skip to main content

Device Modeling of Dye-Sensitized Solar Cells

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 352))

Abstract

We review the concepts and methods of modeling of the dye-sensitized solar cell, starting from fundamental electron transfer theory, and using phenomenological transport-conservation equations. The models revised here are aimed at describing the components of the current–voltage curve of the solar cell, based on small perturbation experimental methods, and to such an end, a range of phenomena occurring in the nanoparticulate electron transport materials, and at interfaces, are covered. Disorder plays a major role in the definition of kinetic parameters, and we introduce single particle as well as collective function definitions of diffusion coefficient and electron lifetime. Based on these fundamental considerations, applied tools of analysis of impedance spectroscopy are described, and we outline in detail the theory of recombination via surface states that is successful to describe the measured recombination resistance and lifetime.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O’Regan B, Grätzel M (1991) A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Google Scholar 

  2. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III) based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    CAS  Google Scholar 

  3. Chang JA, Rhee JH, Im SH, Lee YH, Kim H-J, Seok SI, Nazeeruddin MK, Grätzel M (2010) High-performance nanostructured inorganic–organic heterojunction solar cells. Nano Lett 10:2609–2612

    CAS  Google Scholar 

  4. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591

    Google Scholar 

  5. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647

    CAS  Google Scholar 

  6. Bignozzi CA, Argazzi R, Boaretto R, Busatto E, Carli S, Ronconi F, Caramori S (2013) The role of transition metal complexes in dye sensitized solar devices. Coord Chem Rev 257:1472–1492

    Google Scholar 

  7. Mora-Seró I, Bisquert J (2010) Breakthroughs in the development of semiconductor-sensitized solar cells. J Phys Chem Lett 1:3046–3052

    Google Scholar 

  8. Hodes G (2008) Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J Phys Chem C 112:17778–17787

    CAS  Google Scholar 

  9. Dittrich T, Belaidi A, Ennaoui A (2011) Concepts of inorganic solid-state nanostructured solar cells. Sol Energ Mat Sol Cells 95(6):1527–1536

    Google Scholar 

  10. Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin SM, Grätzel M (2007) Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J Phys Chem C 111:6550–6560

    CAS  Google Scholar 

  11. Barea EM, Ortiz J, Payá FJ, Fernández-Lázaro F, Fabregat-Santiago F, Sastre-Santos A, Bisquert J (2010) Energetic factors governing injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers. Energ Environ Sci 3:1985–1994

    CAS  Google Scholar 

  12. Bisquert J (2008) Physical electrochemistry of nanostructured devices. Phys Chem Chem Phys 10:49–72

    CAS  Google Scholar 

  13. Ansari-Rad M, Anta JA, Bisquert J (2013) Interpretation of diffusion and recombination in nanostructured and energy disordered materials by stochastic quasiequilibrium simulation. J Phys Chem C. doi:10.1021/jp403232b

    Google Scholar 

  14. Bisquert J, Mora-Seró I (2010) Simulation of steady-state characteristics of dye-sensitized solar cells and the interpretation of the diffusion length. J Phys Chem Lett 1:450–456

    CAS  Google Scholar 

  15. Södergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical models for the action spectrum and the current–voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556

    Google Scholar 

  16. Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110:19406–19411

    Google Scholar 

  17. Nayak PK, Garcia-Belmonte G, Kahn A, Bisquert J, Cahen D (2012) Photovoltaic efficiency limits and material disorder. Energ Environ Sci 5:6022–6039

    CAS  Google Scholar 

  18. Halme J, Boschloo G, Hagfeldt A, Lund P (2008) Spectral characteristics of light harvesting, electron injection, and steady-state charge collection in pressed TiO2 dye solar cells. J Phys Chem C 112:5623–5637

    CAS  Google Scholar 

  19. Li L-L, Diau EW-G (2012) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304

    Google Scholar 

  20. Bertoluzzi L, Ma S (2013) On the methods of calculation of the charge collection efficiency of dye sensitized solar cells. Phys Chem Chem Phys 15:4283–4285

    CAS  Google Scholar 

  21. Usami A (1999) Rigorous solutions of light scattering of neighboring TiO2 particles in nanocrystalline films. Sol Energ Mat Sol Cells 59:163–166

    CAS  Google Scholar 

  22. Usami A (2000) A theoretical simulation of light scattering of nanocrystalline films in photoelectrochemical solar cells. Sol Energ Mat Sol Cells 62:239–246

    CAS  Google Scholar 

  23. Usami A (2000) Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells. Sol Energ Mat Sol Cells 64:73–83

    CAS  Google Scholar 

  24. Tachibana Y, Hara K, Sayama K, Arakawa H (2002) Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells. Chem Mater 14:2527–2535

    CAS  Google Scholar 

  25. Galvez FE, Kemppainen E, Miguez H, Halme J (2012) Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description. J Phys Chem C 116:11426–11433

    CAS  Google Scholar 

  26. Lin Y, Ma YT, Yang L, Xiao XR, Zhou XW, Li XP (2006) Computer simulations of light scattering and mass transport of dye-sensitized nanocrystalline solar cells. J Electroanal Chem 588:51–58

    CAS  Google Scholar 

  27. Raga SR, Barea EM, Fabregat-Santiago F (2012) Analysis of the origin of open circuit voltage in dye solar cells. J Phys Chem Lett 3:1629–1634

    CAS  Google Scholar 

  28. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J (2011) Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys 13:9083–9118

    CAS  Google Scholar 

  29. Bisquert J, Fabregat-Santiago F (2010) Impedance spectroscopy: a general introduction and application to dye-sensitized solar cells. In: Kalyanasundaram K (ed) Dye-sensitized solar cells. CRC, Boca Raton

    Google Scholar 

  30. Barea EM, Zafer C, Gultein B, Aydin B, Koyuncu S, Icli S, Fabregat-Santiago F, Bisquert J (2010) Quantification of the effects of recombination and injection in the performance of dye-sensitized solar cells based on N-substituted carbazole dyes. J Phys Chem C 114:19840–19848

    CAS  Google Scholar 

  31. Barea EM, Gonzalez-Pedro V, Ripolles-Sanchis T, Wu H-P, Li L-L, Yeh C-Y, Diau EW-G, Bisquert J (2011) Porphyrin dyes with high injection and low recombination for highly efficient mesoscopic dye-sensitized solar cells. J Phys Chem C 115:10898–10902

    CAS  Google Scholar 

  32. Zhou D, Bai Y, Zhang J, Cai N, Su M, Wang Y, Zhang M, Wang P (2010) Anion effects in organic dye-sensitized mesoscopic solar cells with ionic liquid electrolytes: tetracyanoborate vs dicyanamide. J Phys Chem C 115:816–822

    Google Scholar 

  33. Xu X, Cao K, Huang D, Shen Y, Wang M (2012) Disulfide/thiolate based redox shuttle for dye-sensitized solar cells: an impedance spectroscopy study. J Phys Chem C 116:25233–25241

    CAS  Google Scholar 

  34. Yu Q, Zhou D, Shi Y, Si X, Wang Y, Wang P (2010) Stable and efficient dye-sensitized solar cells: photophysical and electrical characterizations. Energe Environ Sci 3:1722–1725

    CAS  Google Scholar 

  35. Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P (2011) High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chem Commun 47:4376–4378

    CAS  Google Scholar 

  36. Zhang M, Liu J, Wang Y, Zhou D, Wang P (2011) Redox couple related influences of pi-conjugation extension in organic dye-sensitized mesoscopic solar cells. Chem Sci 2:1401–1406

    CAS  Google Scholar 

  37. Zhou D, Yu Q, Cai N, Bai Y, Wang Y, Wang P (2011) Efficient organic dye-sensitized thin-film solar cells based on the tris(1,10-phenanthroline)cobalt(II/III) redox shuttle. Energ Environ Sci 4:2030–2034

    CAS  Google Scholar 

  38. Bai Y, Zhang J, Zhou D, Wang Y, Zhang M, Wang P (2011) Engineering organic sensitizers for iodine-free dye-sensitized solar cells: red-shifted current response concomitant with attenuated charge recombination. J Am Chem Soc 133:11442–11445

    CAS  Google Scholar 

  39. Liu Y, Jennings JR, Zakeeruddin SM, Grätzel M, Wang Q (2013) Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy. J Am Chem Soc 135:3939–3952

    CAS  Google Scholar 

  40. Mora-Seró I, Giménez S, Fabregat-Santiago F, Gomez R, Shen Q, Toyoda T, Bisquert J (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42:1848–1857

    Google Scholar 

  41. Gónzalez-Pedro V, Xu X, Mora-Seró I, Bisquert J (2010) Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4:5783–5790

    Google Scholar 

  42. Boix PP, Guerrero A, Marchesi LF, Garcia-Belmonte G, Bisquert J (2011) Current–voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves. Adv Energ Mater 1:1073–1078

    CAS  Google Scholar 

  43. Wang H, Peter LM (2009) A comparison of different methods to determine the electron diffusion length in dye-sensitized solar cells. J Phys Chem C 113:18125–18133

    CAS  Google Scholar 

  44. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333

    CAS  Google Scholar 

  45. Jennings JR, Liu Y, Safari-Alamuti F, Wang Q (2012) Dependence of dye-sensitized solar cell impedance on photoelectrode thickness. J Phys Chem C 116:1556–1562

    CAS  Google Scholar 

  46. Jaegermann W (1996) The semiconductor/electrolyte interface: a surface science approach. Mod Asp Electrochem 30:1–185

    CAS  Google Scholar 

  47. Bisquert J, Cahen D, Rühle S, Hodes G, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108:8106–8118

    CAS  Google Scholar 

  48. Bisquert J (2007) Hopping transport of electrons in dye-sensitized solar cells. J Phys Chem C 111:17163–17168

    CAS  Google Scholar 

  49. Bisquert J (2008) Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states. Phys Chem Chem Phys 10:3175–3194

    CAS  Google Scholar 

  50. Bisquert J, Zaban A, Greenshtein M, Mora-Seró I (2004) Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126:13550

    CAS  Google Scholar 

  51. Bisquert J, Vikhrenko VS (2004) Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J Phys Chem B 108:2313–2322

    CAS  Google Scholar 

  52. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Giménez S (2009) Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J Phys Chem C 113:17278–17290

    CAS  Google Scholar 

  53. van de Lagemaat J, Frank AJ (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J Phys Chem B 105:11194–11205

    Google Scholar 

  54. Benkstein KD, Kopidakis N, Van de Lagemaat J, Frank AJ (2003) Influence of the percolation network geometry on the electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B 107:7759–7767

    CAS  Google Scholar 

  55. Anta JA (2009) Random walk numerical simulation for solar cell applications. Energ Environ Sci 2:387–392

    CAS  Google Scholar 

  56. Ansari-Rad M, Abdi Y, Arzi E (2012) Simulation of non-linear recombination of charge carriers in sensitized nanocrystalline solar cells. J Appl Phys 112:074319

    Google Scholar 

  57. Mendels D, Tessler N (2013) Drift and diffusion in disordered organic semiconductors: the role of charge density and charge energy transport. J Phys Chem C 117:3287–3293

    CAS  Google Scholar 

  58. Rego LGC, Batista VS (2003) Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am Chem Soc 125:7989–7997

    CAS  Google Scholar 

  59. Ronca E, Pastore M, Belpassi L, Tarantelli F, De Angelis F (2012) Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. Energ Environ Sci 6:183–193

    Google Scholar 

  60. Pastore M, de Angelis F (2013) Intermolecular interactions in dye-sensitized solar cells: a computational modeling perspective. J Phys Chem Lett 4:956–974

    CAS  Google Scholar 

  61. Baumeier B, May F, Lennartz C, Andrienko D (2012) Challenges for in silico design of organic semiconductors. J Mater Chem 22:10971–10976

    CAS  Google Scholar 

  62. Ruhle V, Lukyanov A, May F, Schrader M, Vehoff T, Kirkpatrick J, Baumeier B, Andrienko D (2011) Microscopic simulations of charge transport in disordered organic semiconductors. J Chem Theory Comput 7:3335–3345

    Google Scholar 

  63. Coehoorn R, Bobbert PA (2012) Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors. Physica Status Solidi A 209:2354–2377

    CAS  Google Scholar 

  64. Cao F, Oskam G, Meyer GJ, Searson PC (1996) Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells. J Phys Chem 100:17021–17027

    CAS  Google Scholar 

  65. Villanueva J, Anta JA, Guillen E, Oskam G (2009) Numerical simulation of the current–voltage curve in dye-sensitized solar cells. J Phys Chem C 113:19722–19731

    CAS  Google Scholar 

  66. Cai JH, Chen H, Han LY (2012) Models of electron injection, diffusion and recombination in dye-sensitized solar cells. Int J Mod Phys B 26:19

    Google Scholar 

  67. Cass MJ, Qiu FL, Walker AB, Fisher AC, Peter LM (2003) Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells. J Phys Chem B 107:113–119

    CAS  Google Scholar 

  68. Kambili A, Walker AB, Qiu FL, Fisher AC, Savin AD, Peter LM (2002) Electron transport in the dye sensitized nanocrystalline cell. Physica E 14:203–209

    CAS  Google Scholar 

  69. Duffy NW, Peter LM, Rajapakse RMG, Wijayantha KGU (2000) Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sansitized nanocrystalline photovoltaic cells. J Phys Chem B 104:8916–8919

    CAS  Google Scholar 

  70. Duffy NW, Peter LM, Rajapakse RMG, Wijayantha KGU (2000) A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitized nanocrystalline solar cells. Electrochem Commun 2:658–662

    CAS  Google Scholar 

  71. Jennings JR, Peter LM (2007) A reappraisal of the electron diffusion length in solid-state dye-sensitized solar cells. J Phys Chem C 111:16100–16104

    CAS  Google Scholar 

  72. Lobato K, Peter LM, Wurfel U (2006) Direct measurement of the internal electron quasi-Fermi level in dye sensitized solar cells using a titanium secondary electrode. J Phys Chem B 110:16201–16204

    CAS  Google Scholar 

  73. Paasch G, Micka K, Gersdorf P (1993) Theory of the electrochemical impedance of macrohomogeneous porous electrodes. Electrochim Acta 38:2653–2662

    CAS  Google Scholar 

  74. Stangl R, Ferber J, Luther J (1998) On the modeling of the dye-sensitized solar cell. Sol Energ Mat Sol Cells 54:255–264

    CAS  Google Scholar 

  75. Ferber J, Stangl R, Luther J (1998) An electrical model of the dye-sensitized solar cell. Sol Energ Mat Sol Cells 53:29–54

    CAS  Google Scholar 

  76. Burgelman M, Grasso C (2004) Network of flatband solar cells as a model for solid-state nanostructured solar cells. J Appl Phys 95:2020–2024

    CAS  Google Scholar 

  77. Newman JS (1973) Electrochemical systems. Prentice-Hall, Englewoods Cliffs

    Google Scholar 

  78. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York

    Google Scholar 

  79. Mora-Seró I, Garcia-Belmonte G, Boix PP, Vázquez MA, Bisquert J (2009) Impedance characterisation of highly efficient silicon solar cell under different light illumination intensities. Energe Environ Sci 2:678–686

    Google Scholar 

  80. Rickert H (1982) Electrochemistry of solids. Springer, Berlin

    Google Scholar 

  81. Riess I (1997) What does a voltmeter measure? Solid State Ion 95:327–328

    CAS  Google Scholar 

  82. Schwarzburg K, Willig F (1999) Origin of photovoltage and photocurrent in the nanoporous dye-sensitized electrochemical solar cell. J Phys Chem B 28:5743–5746

    Google Scholar 

  83. Pichot F, Gregg BA (2000) The photovoltage-determining mechanism in dye-sensitized solar cells. J Phys Chem B 104:6–10

    CAS  Google Scholar 

  84. Cahen D, Hodes G, Grätzel M, Guillemoles JF, Riess I (2000) Nature of photovoltaic action in dye-sensitized solar cells. J Phys Chem B 104:2053–2059

    CAS  Google Scholar 

  85. Levy B, Liu W, Gilbert SE (1997) Directed photocurrents in nanostructured TiO2/SnO2 heterojunction diodes. J Phys Chem B 101:1810–1816

    CAS  Google Scholar 

  86. Turrión M, Bisquert J, Salvador P (2003) Flatband potential of F:SnO2 in a TiO2 dye-sensitized solar cell: an interference reflection study. J Phys Chem B 107:9397–9403

    Google Scholar 

  87. Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Bogdanoff P, Zaban A (2003) Mott-Schottky analysis of nanoporous semiconductor electrodes in the dielectric state deposited on SnO2(F) conducting substrates. J Electrochem Soc 150:E293–E298

    CAS  Google Scholar 

  88. Rühle S, Dittrich T (2005) Investigation of the electric field in TiO2/FTO junctions used in dye-sensitized solar cells by photocurrent transients. J Phys Chem B 109:9522–9526

    Google Scholar 

  89. Ruhle S, Cahen D (2004) Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance. J Phys Chem B 108:17946–17951

    Google Scholar 

  90. Liu WQ, Kou DX, Hu LH, Dai SY (2011) The kinetics of electron transfer across the multi-point contact interface through simplifying the complex structure in dye-sensitized solar cell. Chem Phys Lett 513:145–148

    CAS  Google Scholar 

  91. van de Lagemaat J, Park N-G, Frank AJ (2000) Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques. J Phys Chem B 104:2044–2052

    Google Scholar 

  92. Bisquert J (2011) Dilemmas of dye-sensitized solar cells. ChemPhysChem 12:1633–1636

    CAS  Google Scholar 

  93. Zhang Z, Zakeeruddin SM, O'Regan BC, Humphry-Baker R, Grätzel M (2005) Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. J Phys Chem B 109:21818–21824

    CAS  Google Scholar 

  94. Guerrero A, Marchesi LF, Boix PP, Ruiz-Raga S, Ripolles-Sanchis T, Garcia-Belmonte G, Bisquert J (2012) How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells. ACS Nano 6:3453–3460

    CAS  Google Scholar 

  95. Mora-Seró I, Fabregat-Santiago F, Denier B, Bisquert J, Tena-Zaera R, Elias J, Lévy-Clement C (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89:203117

    Google Scholar 

  96. Tena-Zaera R, Elias J, Lévy-Clément C, Bekeny C, Voss T, Mora-Seró I, Bisquert J (2008) Influence of the potassium chloride concentration on the physical properties of electrodeposited ZnO nanowire arrays. J Phys Chem C 112:16318–16323

    CAS  Google Scholar 

  97. Foley JM, Price MJ, Feldblyum JI, Maldonado S (2012) Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion. Energe Environ Sci 5:5203–5220

    CAS  Google Scholar 

  98. Kambe S, Nakade S, Kitamura T, Wada Y, Yanagida S (2002) Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems. J Phys Chem B 106:2967–2972

    CAS  Google Scholar 

  99. Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A (2010) Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J Am Chem Soc 132:16714–16724

    CAS  Google Scholar 

  100. Bignozzi CA, Argazzi R, Boaretto R, Busatto E, Carli S, Ronconi F, Caramori S (2013) The role of transition metal complexes in dye sensitized solar devices. Coord Chem Rev 257(9–10):1472–1492

    Google Scholar 

  101. Snaith HJ, Grätzel M (2007) Light-enhanced charge mobility in a molecular hole transporter. Phys Rev Lett 98:177402

    Google Scholar 

  102. Fabregat-Santiago F, Bisquert J, Cevey L, Chen P, Wang M, Zakeeruddin SM, Grätzel M (2009) Electron transport and recombination in solid state dye solar cell with spiro-OMeTAD as hole conductor. J Am Chem Soc 131:558–562

    CAS  Google Scholar 

  103. Wang M, Chen P, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2009) The influence of charge transport and recombination on the performance of dye-sensitized solar cells. ChemPhysChem 10:290–299

    CAS  Google Scholar 

  104. Boix PP, Larramona G, Jacob A, Delatouche B, Mora-Sero I, Bisquert J (2011) Hole transport and recombination in all-solid Sb2S3-sensitized TiO2 solar cells using CuSCN as hole transporter. J Phys Chem C 116:1579–1587

    Google Scholar 

  105. Boix PP, Lee YH, Fabregat-Santiago F, Im SH, Mora-Sero I, Bisquert J, Seok SI (2012) From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano 6:873–880

    CAS  Google Scholar 

  106. Dualeh A, Moehl T, Nazeeruddin MK, Grätzel M (2013) Temperature dependence of transport properties of Spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells. ACS Nano 7:2292–2301

    CAS  Google Scholar 

  107. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769

    CAS  Google Scholar 

  108. Kopidakis N, Schiff EA, Park NG, van de Lagemaat J, Frank AJ (2000) Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2. J Phys Chem B 104:3930–3936

    CAS  Google Scholar 

  109. Champlain JG (2011) On the use of the term “ambipolar”. Appl Phys Lett 99:123502

    Google Scholar 

  110. Ritter D, Zeldov E, Weiser K (1988) Ambipolar transport in amorphous semiconductors in the lifetime and relaxation-time regimes investigated by the steady-state photocarrier grating technique. Phys Rev B 38:8296

    Google Scholar 

  111. Papageorgiou N, Grätzel M, Infelta PP (1996) On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells. Sol Energ Mat Sol Cells 44:405–438

    CAS  Google Scholar 

  112. Kalaignan GP, Kang YS (2006) A review on mass transport in dye-sensitized nanocrystalline solar cells. J Photochem Photobiol C-Photochem Rev 7:17–22

    CAS  Google Scholar 

  113. Usami A, Ozaki H (2001) Computer simulations of charge transport in dye-sensitized nanocrystalline photovoltaic cells. J Phys Chem B 105:4577–4583

    CAS  Google Scholar 

  114. Usami A (1998) Theoretical study of charge trasportation in dye-sensitized nanocrystalline TiO2 electrodes. Chem Phys Lett 292:223–228

    CAS  Google Scholar 

  115. Hyk W, Augustynski J (2006) Steady-state operation of porous photoelectrochemical cells under the conditions of mixed diffusional and migrational mass transport. J Electrochem Soc 153:A2326

    CAS  Google Scholar 

  116. Barnes PRF, Anderson AY, Durrant JR, O'Regan BC (2011) Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour. Phys Chem Chem Phys 13:5798–5816

    CAS  Google Scholar 

  117. Andrade L, Sousa J, Aguilar Ribeiro H, Mendes A (2012) Phenomenological modeling of dye-sensitized solar cells under transient conditions. Sol Energ 85:781–793

    Google Scholar 

  118. Gagliardi A, der Maur MA, Gentilini D, Di Carlo A (2011) Simulation of dye solar cells: through and beyond one dimension. J Comput Electron 10:424–436

    CAS  Google Scholar 

  119. Chua J, Mathews N, Jennings JR, Yang G, Wang Q, Mhaisalkar SG (2011) Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized solar cells. Phys Chem Chem Phys 13:19314–19317

    CAS  Google Scholar 

  120. Miettunen K, Halme J, Visuri A-M, Lund P (2011) Two-dimensional time-dependent numerical modeling of edge effects in dye solar cells. J Phys Chem C 115:7019–7031

    CAS  Google Scholar 

  121. Mastroianni S, Lanuti A, Penna S, Reale A, Brown TM, Di Carlo A, Decker F (2012) Physical and electrochemical analysis of an indoor–outdoor ageing test of large-area dye solar cell devices. ChemPhysChem 13:2925–2936

    CAS  Google Scholar 

  122. Anta JA, Idigoras J, Guillen E, Villanueva-Cab J, Mandujano-Ramirez HJ, Oskam G, Pelleja L, Palomares E (2012) A continuity equation for the simulation of the current–voltage curve and the time-dependent properties of dye-sensitized solar cells. Phys Chem Chem Phys 14:10285–10299

    CAS  Google Scholar 

  123. Gagliardi A, Mastroianni S, Gentilini D, Giordano F, Reale A, Brown TM, Di Carlo A (2010) Multiscale modeling of dye solar cells and comparison with experimental data. IEEE J Select Top Quant Electron 16:1611–1618

    CAS  Google Scholar 

  124. Halme J, Vahermaa P, Miettunen K, Lund P (2010) Device physics of dye solar cells. Adv Mater 22:E210–E234

    CAS  Google Scholar 

  125. Peter LM (2007) Characterization and modeling of dye-sensitized solar cells. J Phys Chem C 111:6601–6612

    CAS  Google Scholar 

  126. Barnes PRF, Miettunen K, Li X, Anderson AY, Bessho T, Gratzel M, O'Regan BC (2013) Interpretation of optoelectronic transient and charge extraction measurements in dye-sensitized solar cells. Adv Mater 25:1881–1922

    CAS  Google Scholar 

  127. Li L-L, Chang Y-C, Wu H-P, Diau EW-G (2012) Characterisation of electron transport and charge recombination using temporally resolved and frequency-domain techniques for dye-sensitised solar cells. Int Rev Phys Chem 31:420–467

    CAS  Google Scholar 

  128. Schwarzburg K, Willig F (1991) Influence of trap filling on photocurrent transients in polycrystalline TiO2. Appl Phys Lett 58:2520–2522

    CAS  Google Scholar 

  129. Franco G, Gehring J, Peter LM, Ponomarev EA, Uhlendorf I (1999) Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. J Phys Chem B 103:692–698

    CAS  Google Scholar 

  130. van de Lagemaat J, Frank AJ (2000) Effect of the surface state distribution on electron transport in dye sensitized TiO2 solar cells: nonlinear electron-transport kinetics. J Phys Chem B 104:4292–4294

    Google Scholar 

  131. Vanmaekelbergh D, de Jongh PE (1999) Driving force for electron transport in porous nanostructured photoelectrodes. J Phys Chem B 103:747–750

    CAS  Google Scholar 

  132. Vanmaekelbergh D, de Jongh PE (2000) Electron transport in disordered semiconductors studied by a small harmonic modulation of the steady state. Phys Rev B 61:4699–4707

    CAS  Google Scholar 

  133. Nelson J (1999) Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys Rev B 59:15374

    CAS  Google Scholar 

  134. Bisquert J (2003) Chemical capacitance of nanostructured semiconductors: its origin and significance for heterogeneous solar cells. Phys Chem Chem Phys 5:5360–5364

    CAS  Google Scholar 

  135. Jamnik J, Maier J (2001) Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys Chem Chem Phys 3:1668–1678

    CAS  Google Scholar 

  136. Shockley W (1958) Electrons, holes, and traps. Proc IRE 46:973–990

    Google Scholar 

  137. Garcia-Belmonte G, Guerrero A, Bisquert J (2013) Elucidating operating modes of bulk-heterojunction solar cells from impedance spectroscopy analysis. J Phys Chem Lett 4:877–886

    Google Scholar 

  138. Lee PA (1982) Density of states and screening near the mobility edge. Phys Rev B 26:5882–5885

    CAS  Google Scholar 

  139. Berger T, Monllor-Satoca D, Jankulovska M, Lana-Villarreal T, Gomez R (2012) The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhysChem 13(12):2824–2875

    CAS  Google Scholar 

  140. Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4:859–864

    CAS  Google Scholar 

  141. van Roosbroeck W (1953) The transport of added current carriers in a homogeneous semiconductor. Phys Rev 91:282–289

    Google Scholar 

  142. Rose A (1963) Concepts in photoconductivity and allied problems. Interscience, New York

    Google Scholar 

  143. van Roosbroeck W, Shockley W (1954) Photon-radiative recombination of electrons and holes in germanium. Phys Rev 94:1558–1560

    Google Scholar 

  144. Schmidt J (1999) Measurement of differential and actual recombination parameters in crystalline silicon wafers. IEEE Trans Electron Devices 46:2018–2025

    CAS  Google Scholar 

  145. Tiedje T, Rose A (1981) A physical interpretation of dispersive transport in disordered semiconductors. Solid State Commun 37:49

    CAS  Google Scholar 

  146. Orenstein J, Kastner M (1981) Photocurrent transient spectroscopy: mesurament of the density of localized states in a–As2Se3. Phys Rev Lett 46:1421–1424

    CAS  Google Scholar 

  147. Hoesterey DC, Letson GM (1963) The trapping of photocarriers in anthracene. J Phys Chem Solids 24:1609

    CAS  Google Scholar 

  148. Ondersma JW, Hamann TW (2011) Measurements and modeling of recombination from nanoparticle TiO2 electrodes. J Am Chem Soc 133:8264–8271

    CAS  Google Scholar 

  149. Ansari-Rad M, Abdi Y, Arzi E (2012) Reaction order and ideality factor in dye-sensitized nanocrystalline solar cells: a theoretical investigation. J Phys Chem C 116:10867–10872

    CAS  Google Scholar 

  150. Bisquert J (2008) Beyond the quasi-static approximation: impedance and capacitance of an exponential distribution of traps. Phys Rev B 77:235203

    Google Scholar 

  151. Dunn HK, Peter LM, Bingham SJ, Maluta E, Walker AB (2012) In situ detection of free and trapped electrons in dye-sensitized solar cells by photo-induced microwave reflectance measurements. J Phys Chem C 116:22063–22072

    CAS  Google Scholar 

  152. Chen J, Li B, Zheng J, Jia S, Zhao J, Jing H, Zhu Z (2011) Role of one-dimensional ribbonlike nanostructures in dye-sensitized TiO2-based solar cells. J Phys Chem C 115:7104–7113

    CAS  Google Scholar 

  153. Ondersma JW, Hamann TW (2009) Impedance investigation of dye-sensitized solar cells employing outer-sphere redox shuttles. J Phys Chem C 114:638–645

    Google Scholar 

  154. Bisquert J (2004) Chemical diffusion coefficient in nanostructured semiconductor electrodes and dye-sensitized solar cells. J Phys Chem B 108:2323–2332

    CAS  Google Scholar 

  155. Marinado T, Nonomura K, Nissfolk J, Karlsson MK, Hagberg DP, Sun L, Mori S, Hagfeldt A (2009) How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes. Langmuir 26:2592–2598

    Google Scholar 

  156. Jennings JR, Li F, Wang Q (2010) Reliable determination of electron diffusion length and charge separation efficiency in dye-sensitized solar cells. J Phys Chem C 114:14665–14674

    CAS  Google Scholar 

  157. González-Vázquez JP, Anta JA, Bisquert J (2009) Random walk numerical simulation for hopping transport at finite carrier concentrations: diffusion coefficient and transport energy concept. Phys Chem Chem Phys 11:10359–10367

    Google Scholar 

  158. Gonzalez-Vazquez JP, Oskam G, Anta JA (2012) Origin of nonlinear recombination in dye-sensitized solar cells: interplay between charge transport and charge transfer. J Phys Chem C 116:22687–22697

    CAS  Google Scholar 

  159. van de Lagemaat J, Kopidakis N, Neale NR, Frank AJ (2005) Effect of nonideal statistics on electron diffusion in sensitized nanocrystalline TiO2. Phys Rev B 71:035304

    Google Scholar 

  160. Anta JA, Mora-Seró I, Dittrich T, Bisquert J (2008) Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation. Phys Chem Chem Phys 10:4478–4485

    CAS  Google Scholar 

  161. Gonzalez-Vazquez JP, Anta JA, Bisquert J (2010) Determination of the electron diffusion length in dye-sensitized solar cells by random walk simulation: compensation effects and voltage dependence. J Phys Chem C 114:8552–8558

    CAS  Google Scholar 

  162. Darken LS (1948) Trans Am Inst Min Eng 175:184

    Google Scholar 

  163. Paul EW, Ricco AJ, Wrighton MS (1985) Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline based microelectronic devices. J Phys Chem 89:1441

    CAS  Google Scholar 

  164. Vanmaekelbergh D, Houtepen AJ, Kelly JJ (2007) Electrochemical gating: a method to tune and monitor the (opto)electronic properties of functional materials. Electrochim Acta 53:1140–1149

    CAS  Google Scholar 

  165. Pomerantz Z, Zaban A, Ghosh S, Lellouche J-P, Garcia-Belmonte G, Bisquert J (2008) Capacitance, spectroelectrochemistry and conductivity of polarons and bipolarons in a polydicarbazole based conducting polymer. J Electroanal Chem 614:49–60

    Google Scholar 

  166. Ondersma JW, Hamann TW (2012) Conduction band energy determination by variable temperature spectroelectrochemistry. Energ Environ Sci 5:9476–9480

    CAS  Google Scholar 

  167. Boschloo G, Fitzmaurice D (1999) Electron accumulation in nanostructured TiO2 (anatase) electrodes. J Phys Chem B 103:7860–7868

    CAS  Google Scholar 

  168. Berger T, Anta JA, Morales-Florez V (2012) Electrons in the band gap: spectroscopic characterization of anatase TiO2 nanocrystal electrodes under Fermi level control. J Phys Chem C 116:11444–11455

    CAS  Google Scholar 

  169. Kroeze JE, Savenije TJ, Warman JM (2003) Electrodeless determination of the trap density, decay kinetics and charge separation efficiency of dye-sensitized nanocrystalline TiO2. J Am Chem Soc 126:7608

    Google Scholar 

  170. Friedrich D, Kunst M (2011) Analysis of charge carrier kinetics in nanoporous systems by time resolved photoconductance measurements. J Phys Chem C 115:16657–16663

    CAS  Google Scholar 

  171. Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Zaban A, Salvador P (2002) Decoupling of transport, charge-storage and interfacial charge-transfer in the nanocrystalline TiO2/electrolyte system by impedance methods. J Phys Chem B 106:334–339

    CAS  Google Scholar 

  172. Archana PS, Jose R, Yusoff MM, Ramakrishna S (2011) Near band-edge electron diffusion in electrospun Nb-doped anatase TiO[sub 2] nanofibers probed by electrochemical impedance spectroscopy. Appl Phys Lett 98:152106

    Google Scholar 

  173. Jennings JR, Wang Q (2010) Influence of lithium ion concentration on electron injection, transport, and recombination in dye-sensitized solar cells. J Phys Chem C 114:1715–1724

    CAS  Google Scholar 

  174. Bisquert J, Grätzel M, Wang Q, Fabregat-Santiago F (2006) Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating. J Phys Chem B 110:11284–11290

    CAS  Google Scholar 

  175. Bisquert J (2000) Influence of the boundaries in the impedance of porous film electrodes. Phys Chem Chem Phys 2:4185–4192

    CAS  Google Scholar 

  176. Barea EM, Bisquert J (2013) Properties of chromophores determining recombination at TiO2-dye-electrolyte interface. Langmuir 29:8773–8781

    Google Scholar 

  177. Clifford JN, Martinez-Ferrero E, Palomares E (2012) Dye mediated charge recombination dynamics in nanocrystalline TiO2 dye sensitized solar cells. J Mater Chem 22:12415–12422

    CAS  Google Scholar 

  178. de Vries MJ, Pellin MJ, Hupp JT (2010) Dye-sensitized solar cells: driving-force effects on electron recombination dynamics with cobalt-based shuttles. Langmuir. doi:10.1021/la904643t

    Google Scholar 

  179. Ondersma JW, Hamann TW (2013) Recombination and redox couples in dye-sensitized solar cells. Coord Chem Rev 257:1533–1543

    Google Scholar 

  180. Bisquert J, Zaban A, Salvador P (2002) Analysis of the mechanism of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady state statistics and transfer rate of electrons in surface states. J Phys Chem B 106:8774–8782

    CAS  Google Scholar 

  181. Salvador P, González-Hidalgo M, Zaban A, Bisquert J (2005) Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells. J Phys Chem B 109:15915–15926

    CAS  Google Scholar 

  182. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys 24:966

    CAS  Google Scholar 

  183. Marcus RA (1960) Exchange reactions and electron transfer reactions inclunding isotopic exchange. Theory of oxidation–reduction reactions involving electron transfer. Part 4. Faraday Discuss Chem Soc 29:21

    Google Scholar 

  184. Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J Chem Phys 43:679

    CAS  Google Scholar 

  185. Marcus RA (1959) On the theory of electrochemical and chemical electron transfer processes. Can J Chem 37:155–163

    CAS  Google Scholar 

  186. Gosavi S, Marcus RA (2000) Nonadiabatic electron transfer at metal surfaces. J Phys Chem B 104:2067–2072

    CAS  Google Scholar 

  187. Gosavi S, Qin Gao Y, Marcus RA (2001) Temperature dependence of the electronic factor in the nonadiabatic electron transfer at metal and semiconductor electrodes. J Electroanal Chem 500:71–77

    CAS  Google Scholar 

  188. Marcus RA (1968) Electron transfer at electrodes and in solution: comparison of theory and experiment. Electrochim Acta 13:995–1004

    CAS  Google Scholar 

  189. Marcus RA (1990) Reorganization free energy for electron transfers at liquid–liquid and dielectric semiconductor–liquid interfaces. J Phys Chem 94:1050–1055

    CAS  Google Scholar 

  190. Gao YQ, Georgievskii Y, Marcus RA (2000) On the theory of electron transfer reactions at semiconductor electrode/liquid interfaces. J Chem Phys 112:3358–3369

    CAS  Google Scholar 

  191. Marcus RA (1990) Theory of electron-transfer rates across liquid–liquid interfaces. J Phys Chem 94:4152–4155

    CAS  Google Scholar 

  192. Marcus RA (1963) On the theory of oxidation–reduction reactions involving electron transfer. V. Comparison and properties of electrochemical and chemical rate constants. J Phys Chem 67:853

    CAS  Google Scholar 

  193. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196

    CAS  Google Scholar 

  194. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  195. Landau LD (1932) Assotsiatsiya dvukhatomnykh molekul. Sovetskii Fizicheskii Zhurnal 2:46–52

    CAS  Google Scholar 

  196. Zener C (1933) Dissociation of excited diatomic molecules by external perturbations. Proc R Soc Lond A 140:660–668

    CAS  Google Scholar 

  197. Feldberg SW, Sutin N (2006) Distance dependence of heterogeneous electron transfer through the nonadiabatic and adiabatic regimes. Chem Phys 324:216–225

    CAS  Google Scholar 

  198. Chidsey CED (1991) Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 251:918–922

    Google Scholar 

  199. Hamann TW, Gstrein F, Brunschwig BS, Lewis NS (2005) Measurement of the dependence of interfacial charge-transfer rate constants on the reorganization energy of redox species at n-ZnO/H2O interfaces. J Am Chem Soc 127:13949–13954

    CAS  Google Scholar 

  200. Royea WJ, Fajardo AM, Lewis NS (1997) Fermi golden rule approach to evaluating outer-sphere electron-transfer rate constants at semiconductor/liquid interfaces. J Phys Chem B 101:11152–11159

    CAS  Google Scholar 

  201. Kuciauskas D, Freund MS, Gray HB, Winkler JR, Lewis N (2001) Electron transfer dynamics in nanocrystaline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. J Phys Chem B 105:392–403

    CAS  Google Scholar 

  202. Lyon LA, Hupp JT (1999) Energetics of the nanocrystalline titanium dioxide/aqueous solution interface: approximate conduction band edge variations. J Phys Chem B 103:4623–4628

    CAS  Google Scholar 

  203. Miyashita M, Sunahara K, Nishikawa T, Uemura Y, Koumura N, Hara K, Mori A, Abe T, Suzuki E, Mori S (2008) Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes. J Am Chem Soc 130:17874–17881

    CAS  Google Scholar 

  204. Gaal DA, Hupp JT (2000) Thermally activated, inverted interfacial electron transfer kinetics: high driving force reactions between tin oxide nanoparticles and electrostatically-bound molecular reactants. J Am Chem Soc 122:10956–10963

    CAS  Google Scholar 

  205. Maggio E, Martsinovich N, Troisi A (2012) Theoretical study of charge recombination at the TiO2-electrolyte interface in dye sensitised solar cells. J Chem Phys 137:22A508

    CAS  Google Scholar 

  206. Sun Z, Zhang R-K, Xie H-H, Wang H, Liang M, Xue S (2013) Non-ideal charge recombination and conduction band edge shifts in dye-sensitized solar cells based on adsorbent doped poly(ethylene oxide) electrolytes. J Phys Chem C 117:4364–4373

    CAS  Google Scholar 

  207. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826

    CAS  Google Scholar 

  208. Ardo S, Meyer GJ (2009) Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev 38:115–164

    CAS  Google Scholar 

  209. Richards CE, Anderson AY, Martiniani S, Law C, O'Regan BC (2012) The mechanism of iodine reduction by TiO2 electrons and the kinetics of recombination in dye-sensitized solar cells. J Phys Chem Lett 3:1980–1984

    CAS  Google Scholar 

  210. Rowley JG, Farnum BH, Ardo S, Meyer GJ (2011) Iodide chemistry in dye-sensitized solar cells: making and breaking I–I bonds for solar energy conversion. J Phys Chem Lett 1:3132–3140

    Google Scholar 

  211. Rowley JG, Ardo S, Sun Y, Castellano FN, Meyer GJ (2011) Charge recombination to oxidized iodide in dye-sensitized solar cells. J Phys Chem C 115:20316–20325

    CAS  Google Scholar 

  212. O’Regan BC, Walley K, Juozapavicius M, Anderson A, Matar F, Ghaddar T, Zakeeruddin SM, Klein C, Durrant JR (2009) Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage. J Am Chem Soc 131:3541–3548

    Google Scholar 

  213. Farnum BH, Gardner JM, Meyer GJ (2010) Flash-quench technique employed to study the one-electron reduction of triiodide in acetonitrile: evidence for a diiodide reaction product. Inorg Chem 49:10223–10225

    CAS  Google Scholar 

  214. Shi Y, Dong X (2013) Coupled analysis of steady-state and dynamic characteristics of dye-sensitized solar cells for determination of conduction band movement and recombination parameters. Phys Chem Chem Phys 15:299–306

    CAS  Google Scholar 

  215. Mora-Seró I, Bisquert J (2003) Fermi level of surface states in TiO2 nanoparticles. Nano Lett 3:945–949

    Google Scholar 

  216. Cameron PJ, Peter LM (2005) How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? J Phys Chem B 109:7392

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the following agencies for support of this research. Juan Bisquert’s research is supported by Ministerio de Educacion y Ciencia under project HOPE CSD2007-00007, Generalitat Valenciana (ISIC/2012/008). Rudolph A. Marcus’s research is supported by ARO, ONR and NSF agencies. Rudolph A. Marcus contributed in Sects. 14 and 15 of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bisquert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bisquert, J., Marcus, R.A. (2013). Device Modeling of Dye-Sensitized Solar Cells. In: Beljonne, D., Cornil, J. (eds) Multiscale Modelling of Organic and Hybrid Photovoltaics. Topics in Current Chemistry, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_471

Download citation

Publish with us

Policies and ethics