Skip to main content

Carbohydrate Polymers for Nonviral Nucleic Acid Delivery

  • Chapter
  • First Online:
Book cover Nucleic Acid Transfection

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 296))

Abstract

Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

apoB:

Apolipoprotein B

ASF:

Asialofetuin

ASGP:

Asialoglycoprotein receptor

AS-ODN:

Antisense oligodeoxynucleotide

CD:

Cyclodextrin

CDI:

1,1'-Carbonyldiimidazole

CDP:

Cyclodextrin-containing polycations

CPP:

Cell penetrating peptide

DCC:

N,N'-Dicyclohexylcarbodiimide

DDMC:

2-Diethyl-aminoethyl–dextran–methyl methacrylate graft copolymer

DEAE:

2-Diethyl-aminoethyl

DMEM:

Dulbecco’s Modified Eagle Medium

EDC:

1-Ethyl-3-(3-dimethyl amino)propyl carbodiimide

EtiBr:

Ethidium bromide

HA:

Hyaluronic acid

IL:

Interleukin

N4C3:

Tripropylenetetramine

NHS:

N-Hydroxysuccinimide

NPC:

Non-parenchymal

PAMAM:

Polyamidoamine

PBS:

Phosphate buffered saline

PC:

Parenchymal

PDGF:

Platelet-derived growth factor

PEG:

Poly(ethylene glycol)

PEI:

Polyethylenimine

PGP:

PEGylated glycopeptide

PLGA:

Poly(lactide-co-glycolide)

PLL:

Poly-l-lysine

PO-DNA:

Phosphodiester-DNA

poly(A):

Polyadenine

poly(C):

Polycytosine

poly(dA):

Polydeoxyadenine

poly(dT):

Polydeoxythymine

PS-DNA:

Phosphorothioate-DNA

PVP:

Poly(vinylpyrrolidone)

R8:

Octaarginine

RGD:

Arginine-glycine-aspartic acid

SMC:

Smooth muscle cell

SPG:

Schizophyllan

TNF:

Tumor necrosis factor

References

  1. Pickler RH, Munro CL (1995) Gene therapy for inherited disorders. J Pediatr Nurs 10:40–47

    PubMed  CAS  Google Scholar 

  2. Anderson WF (1992) Human gene therapy. Science 256:803–813

    Google Scholar 

  3. Mulligan RC (1993) The basic science of gene therapy. Science 260:926–932

    PubMed  CAS  Google Scholar 

  4. Wiethoff CM, Middaugh CR (2003) Barriers to nonviral gene delivery. J Pharm Sci 92(2):203–217

    PubMed  CAS  Google Scholar 

  5. Braun CS, Vetro JA, Tomalia DA et al (2005) Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J Pharm Sci 94(2):423–436

    PubMed  CAS  Google Scholar 

  6. Behr J-P (1993) Synthetic gene-transfer vectors. Acc Chem Res 26:274–279

    CAS  Google Scholar 

  7. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37

    PubMed  CAS  Google Scholar 

  8. Davis ME (2002) Non-viral gene delivery systems. Curr Opin Biotechnol 13(2):128–131

    PubMed  CAS  Google Scholar 

  9. Kircheis R, Wagner E (2000) Polycation/DNA complex for in vivo gene delivery. Gene Ther Regul 1:95–114

    CAS  Google Scholar 

  10. Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Control Release 60(2–3):149–160

    PubMed  CAS  Google Scholar 

  11. Godbey WT, Wu KK, Mikos AG (1999) Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res B 45(3):268–275

    CAS  Google Scholar 

  12. Mannisto M, Vanderkerken S, Toncheva V et al (2002) Structure-activity relationships of poly(l-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J Control Release 83(1):169–182

    PubMed  CAS  Google Scholar 

  13. Kim SW (2007) Polylysine copolymers for gene delivery. Gene Transfer 461–471

    Google Scholar 

  14. Kwoh DY, Coffin CC, Lollo CP et al (1999) Stabilization of poly-l-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim Biophys Acta 1444(2):171–190

    PubMed  CAS  Google Scholar 

  15. Smith DK (2006) Dendritic supermolecules–towards controllable nanomaterials. Chem Commun 1:34–44

    Google Scholar 

  16. Eliyahu H, Siani S, Azzam T et al (2006) Relationships between chemical composition, physical properties and transfection efficiency of polysaccharide–spermine conjugates. Biomaterials 27:1646–1655

    PubMed  CAS  Google Scholar 

  17. Hong S, Bielinska AU, Mecke A et al (2004) Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 15(4):774–782

    PubMed  CAS  Google Scholar 

  18. Kraemer M (2004) Dendritic polyamines: simple access to new materials with defined treelike structures for application in nonviral gene delivery. ChemBioChem 5(8):1081

    CAS  Google Scholar 

  19. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications – reflections on the field. Adv Drug Deliv Rev 57(15):2106–2129

    PubMed  CAS  Google Scholar 

  20. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–303

    PubMed  CAS  Google Scholar 

  21. Liu Y, Reineke TM (2005) Hydroxyl stereochemistry and amine number within poly(glycoamidoamine)s affect intracellular DNA delivery. J Am Chem Soc 127(9):3004–3015

    PubMed  CAS  Google Scholar 

  22. Velter I, La Ferla B, Nicotra F (2006) Carbohydrate-based molecular scaffolding. J Carbohydr Chem 25:97–138

    CAS  Google Scholar 

  23. Varma AJ, Kennedy JF, Galgali P (2004) Synthetic polymers functionalized by carbohydrates: a review. Carbohydr Polym 56:429–445

    CAS  Google Scholar 

  24. Yudovin-Farber I, Domb AJ (2007) Cationic polysaccharides for gene delivery. Mat Sci Eng 27:595–598

    CAS  Google Scholar 

  25. Miyata T, Nakamae K (1997) Polymers with pendant saccharides – ‘glycopolymers’. Trends Polym Sci 5(6):198–205

    CAS  Google Scholar 

  26. Ren T, Zhang G, Liu D (2001) Synthesis of galactosyl compounds for targeted gene delivery. Bioorg Med Chem 9(11):2969–2978

    PubMed  CAS  Google Scholar 

  27. Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102(2):555–578

    PubMed  CAS  Google Scholar 

  28. Ladmiral V, Melia E, Haddleton DM (2004) Synthetic glycopolymers: an overview. Eur Polym J 40:431–449

    CAS  Google Scholar 

  29. Mehvar R (2000) Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J Control Release 69:1–25

    PubMed  CAS  Google Scholar 

  30. Sakurai K, Uezu K, Numata M et al (2005) b-1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles. Chem Commun 35:4383–4398

    Google Scholar 

  31. Borchard G (2001) Chitosans for gene delivery. Adv Drug Deliv Rev 52(2):145–150

    PubMed  CAS  Google Scholar 

  32. Yun YH, Goetz DJ, Yellen P et al (2004) Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials 25(1):147–157

    PubMed  CAS  Google Scholar 

  33. Gupta M, Gupta AK (2004) Hydrogel pullulan nanoparticles encapsulating pBUDLacZ plasmid as an efficient gene delivery carrier. J Control Release 99(1):157–166

    PubMed  CAS  Google Scholar 

  34. Vaheri A, Pagano JS (1965) Infectious poliovirus RNA: a sensitive method of assay. Virology 27(3):434–436

    PubMed  CAS  Google Scholar 

  35. Mack KD, Wei R, Elbagarri A et al (1998) A novel method for DEAE-dextran mediated transfection of adherent primary cultured human macrophages. J Immunol Methods 211:79–86

    PubMed  CAS  Google Scholar 

  36. Onishi Y, Eshita Y, Murashita A et al (2005) Synthesis and characterization of 2-diethyl-aminoethyl-dextran-methyl methacrylate graft copolymer for nonviral gene delivery vector. J Appl Polym Sci 98:9–14

    CAS  Google Scholar 

  37. Azzam T, Eliyahu H, Makocitzki A et al (2003) Dextran-spermine conjugate: an efficient vector for gene delivery. Macromol Symp 195:247–261

    CAS  Google Scholar 

  38. Azzam T, Raskin A, Makovitzki A et al (2002) Cationic polysaccharides for gene delivery. Macromolecules 35(27):9947–9953

    CAS  Google Scholar 

  39. Hosseinkhani H, Azzam T, Tabata Y et al (2004) Dextran–spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther 11:194–203

    PubMed  CAS  Google Scholar 

  40. Eliyahu H, Joseph A, Schillemans JP et al (2007) Characterization and in vivo performance of dextran-spermine polyplexes and DOTAP/cholesterol lipoplexes administered locally and systemically. Biomaterials 28(14):2339–2349

    PubMed  CAS  Google Scholar 

  41. Eliyahu H, Joseph A, Azzam T et al (2006) Dextran-spermine-based polyplexes – evaluation of transgene expression and of local and systemic toxicity in mice. Biomaterials 27(8):1636–1645

    PubMed  CAS  Google Scholar 

  42. Singh A, Suri S, Roy K (2009) In-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA-DNA carrying microparticles to dendritic cells. Biomaterials 30(28):5187–5200

    PubMed  CAS  Google Scholar 

  43. Beaudette TT, Cohen JA, Bachelder EM et al (2009) Chemoselective ligation in the functionalization of polysaccharide-based particles. J Am Chem Soc 131(30):10360–10361

    PubMed  CAS  Google Scholar 

  44. Bachelder EM, Beaudette TT, Broaders KE et al (2008) Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J Am Chem Soc 130(32):10494–10495

    PubMed  CAS  Google Scholar 

  45. Sakurai K, Iguchi R, Mizu M et al (2003) Polysaccharide-polynucleotide complexes. Part 7. Hydrogen-ion and salt concentration dependence of complexation between schizophyllan and single-stranded homo RNAs. Bioorg Chem 31(3):216–226

    PubMed  CAS  Google Scholar 

  46. Nagasaki T, Hojo M, Uno A et al (2004) Long-term expression with a cationic polymer derived from a natural polysaccharide: schizophyllan. Bioconjug Chem 15:249–259

    PubMed  CAS  Google Scholar 

  47. Hasegawa T, Fujisawa T, Haraguchi S et al (2005) Schizophyllan–folate conjugate as a new non-cytotoxic and cancer-targeted antisense carrier. Bioorg Med Chem Lett 15(2):327–330

    PubMed  CAS  Google Scholar 

  48. Sakurai K, Shinkai S (2000) Molecular recognition of adenine, cytosine, and uracil in a single-strand RNA by a natural polysaccharide: schizophyllan. J Am Chem Soc 122:4520–4521

    CAS  Google Scholar 

  49. Sakurai K, Mizu M, Shinkai S (2001) Polysaccharide-polynucleotide complexes. 2. Complementary polynucleotide mimic behavior of a natural polysaccharide: schizophyllan in the macromolecular comple with a single strand RNA: poly(C). Biomacromolecules 2:641–650

    PubMed  CAS  Google Scholar 

  50. Sletmoen M, Naess SN, Stokke BT (2009) Structure and stability of polynucleotide-(1, 3)-[beta]-d-glucan complexes. Carbohydr Polym 76(3):389–399

    CAS  Google Scholar 

  51. Hasegawa T, Umeda M, Matsumoto T et al (2004) Lactose-appended schizophyllan is a potential candidate as a hepatocyte-targeted antisense carrier. Chem Commun 4:382–383

    Google Scholar 

  52. Mizu M, Koumoto K, Anada T et al (2004) Antisense oligonucleotides bound in the polysaccharide complex and the enhanced antisense effect due to the low hydrolysis. Biomaterials 25:3117–3123

    PubMed  CAS  Google Scholar 

  53. Koumoto K, Mizu M, Sakurai K et al (2004) Polysaccharide/polynucleotide complexes. Part 6. Chem Biodivers 1(3):520–529

    PubMed  CAS  Google Scholar 

  54. Anada T, Karinaga R, Koumoto K et al (2005) Linear double-stranded DNA that mimics an infective tail of virus genome to enhance transfection. J Control Release 108(2–3):529–539

    PubMed  CAS  Google Scholar 

  55. Takeda Y, Shimada N, Kaneko K et al (2007) Ternary complex consisting of DNA, polycation, and a natural polysaccharide of schizophyllan to induce cellular uptake by antigen presenting cells. Biomacromolecules 8(4):1178–1186

    PubMed  CAS  Google Scholar 

  56. Hasegawa T, Fujisawa T, Numata M et al (2004) Schizophyllans carrying oligosaccharide appendages as potential candidates for cell-targeted antisense carrier. Org Biomol Chem 2(21):3091–3098

    PubMed  CAS  Google Scholar 

  57. Matsumoto T, Numata M, Anada T et al (2004) Chemically modified polysaccharide schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake efficiency. Biochem Biophys Acta 1670:91–104

    PubMed  CAS  Google Scholar 

  58. Karinaga R, Koumoto K, Mizu M et al (2005) PEG-appended beta-(1–>3)-d-glucan schizophyllan to deliver antisense-oligonucleotides with avoiding lysosomal degradation. Biomaterials 26(23):4866–4873

    PubMed  CAS  Google Scholar 

  59. Karinaga R, Anada T, Minari J et al (2006) Galactose-PEG dual conjugation of beta-(1–>3)-d-glucan schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake. Biomaterials 27(8):1626–1635

    PubMed  CAS  Google Scholar 

  60. Mizu M, Koumoto K, Anada T et al (2004) A polysaccharide carrier for immunostimulatory CpG DNA to enhance cytokine secretion. J Am Chem Soc 126(27):8372–8373

    PubMed  CAS  Google Scholar 

  61. Klinman DM, Klaschik S, Sato T et al (2009) CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv Drug Deliv Rev 61(3):248–255

    PubMed  CAS  Google Scholar 

  62. Shimada N, Coban C, Takeda Y et al (2007) A polysaccharide carrier to effectively deliver native phosphodiester CpG DNA to antigen-presenting cells. Bioconjug Chem 18(4):1280–1286

    PubMed  CAS  Google Scholar 

  63. Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1(5):347–355

    PubMed  CAS  Google Scholar 

  64. Pouyani T, Prestwich GD (1994) Functionalized derivatives of hyaluronic acid oligosaccharides: drug carriers and novel biomaterials. Bioconjug Chem 5(4):339–347

    PubMed  CAS  Google Scholar 

  65. Kim A, Checkla DM, Dehazya P et al (2003) Characterization of DNA-hyaluronan matrix for sustained gene transfer. J Control Release 90:81–95

    PubMed  CAS  Google Scholar 

  66. Kim AP, Yellen P, Yun YH et al (2005) Delivery of a vector encoding mouse hyaluronan synthase 2 via a crosslinked hyaluronan film. Biomaterials 26:1585–1593

    PubMed  CAS  Google Scholar 

  67. Yun YH, Chen W (2005) Microspheres formulated from native hyaluronan for applications in gene therapy. In: Mansoor MA (ed) Polymeric gene delivery: principles and applications, CRC Press LLC, USA, pp 475–486

    Google Scholar 

  68. de la Fuente M, Seijo B, Alonso MJ (2008) Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther 15(9):668–676

    PubMed  Google Scholar 

  69. de la Fuente M, Seijo B, Alonso MJ (2008) Design of novel polysaccharidic nanostructures for gene delivery. Nanotechnology 19(7):075105/1–075105/9

    Google Scholar 

  70. Duceppe N, Tabrizian M (2009) Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials 30(13):2625–2631

    PubMed  CAS  Google Scholar 

  71. Wieland JA, Houchin-Ray TL, Shea LD (2007) Non-viral vector delivery from poly(ethylene glycol)-hyaluronic acid hydrogels. J Control Release 120(3):233–241

    PubMed  CAS  Google Scholar 

  72. Saraf A, Hacker MC, Sitharaman B et al (2008) Synthesis and conformational evaluation of a novel gene delivery vector for human mesenchymal stem cells. Biomacromolecules 9(3):818–827

    PubMed  CAS  Google Scholar 

  73. Shen Y, Li Q, Tu J et al (2009) Synthesis and characterization of low molecular weight hyaluronic acid-based cationic micelles for efficient siRNA delivery. Carbohydr Polym 77(1):95–104

    CAS  Google Scholar 

  74. Bruneel D, Schacht E (1995) End group modification of pullulan. Polymer 36:169–172

    CAS  Google Scholar 

  75. Kaneo Y, Tanaka T, Nakano T et al (2001) Evidence for receptor-mediated hepatic uptake of pullulan in rats. J Control Release 70:365–373

    PubMed  CAS  Google Scholar 

  76. Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161(4):673–677

    PubMed  CAS  Google Scholar 

  77. Na K, Lee ES, Bae YH (2003) Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Biopharm 18(2):165–173

    CAS  Google Scholar 

  78. Akiyoshi K, Kobayashi S, Shichibe S et al (1998) Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release 54(3):313–320

    PubMed  CAS  Google Scholar 

  79. Hosseinkhani H, Aoyama T, Ogawa O et al (2002) Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J Control Release 83(2):287–302

    PubMed  CAS  Google Scholar 

  80. Kanatani I, Ikai T, Okazaki A et al (2006) Efficient gene transfer by pullulan-spermine occurs through both clathrin- and raft/caveolae-dependent mechanisms. J Control Release 116(1):75–82

    PubMed  CAS  Google Scholar 

  81. Jo J, Ikai T, Okazaki A, Nagane K, Yamamoto M, Hirano Y, Tabata Y (2007) Expression profile of plasmid DNA obtained using spermine derivatives of pullulan with different molecular weights. J Biomater Sci Polym Ed 18(7):883–899

    Google Scholar 

  82. San Juan A, Hlawaty H, Chaubet F et al (2007) Cationized pullulan 3D matrices as new materials for gene transfer. J Biomed Mater Res A 82A(2):354–362

    CAS  Google Scholar 

  83. Imai T, Shiraishi S, Saito H et al (1991) Interaction of indomethacin with low molecular weight chitosan, and improvements of some pharmacuetical properties of indomethacin by low molecular weight chitosans. Int J Pharm 67:11–20

    CAS  Google Scholar 

  84. Takayama K, Hirata M, Machida Y et al (1990) Effect of interpolymer complex formation on bioadhesive property and drug release phenomenon of compressed tablet consisting of chitosan and sodium hyaluronate. Chem Pharm Bull 38:1993–1997

    PubMed  CAS  Google Scholar 

  85. Meshali MM, Gabr KE (1993) Effect of interpolymer complex formation of chitosan with pectin or acacia on the release behavior of chlorpromazine HCl. Int J Pharm 89:177–181

    CAS  Google Scholar 

  86. Mao H-Q (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70(3):399–421

    PubMed  CAS  Google Scholar 

  87. Mumper R, Wang JJ, Claspell JM et al (1995) Novel polymeric condensing carriers for gene delivery. Proc Intl Sym Control Release Bioact Mater 22:178–179

    Google Scholar 

  88. MacLaughlin FC, Mumper RJ, Wang J et al (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 56:259–272

    PubMed  CAS  Google Scholar 

  89. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1(6):246–253

    CAS  Google Scholar 

  90. Aranaz I, Mengibar M, Harris R et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230

    CAS  Google Scholar 

  91. Aiba S-i (1991) Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. Int J Biol Macromol 13(1):40–44

    PubMed  CAS  Google Scholar 

  92. Mima S, Miya M, Iwamoto R et al (1983) Highly deacetylated chitosan and its properties. J Appl Polym Sci 28(6):1909–1917

    CAS  Google Scholar 

  93. Nguyen S, Hisiger S, Jolicoeur M et al (2009) Fractionation and characterization of chitosan by analytical SEC and 1H NMR after semi-preparative SEC. Carbohydr Polym 75(4):636–645

    CAS  Google Scholar 

  94. Köping-Höggård M, Tubulekas I, Guan H, Edwards K, Nilsson M, Vårum KM, Artursson P (2001) Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8:1108–1121

    PubMed  Google Scholar 

  95. Kiang T, Wen J, Lim HW et al (2004) The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25:5293–5301

    PubMed  CAS  Google Scholar 

  96. Huang M, Fong C-W, Khor E et al (2005) Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J Control Release 106(3):391–406

    PubMed  CAS  Google Scholar 

  97. Liu X, Howard KA, Dong M et al (2007) The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28(6):1280–1288

    PubMed  CAS  Google Scholar 

  98. Rejman J, Oberle V, Zuhorn IS et al (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377(1):159–169

    PubMed  CAS  Google Scholar 

  99. Choksakulnimitr S, Masuda S, Tokuda H et al (1995) In vitro cytotoxicity of macromolecules in different cell culture systems. J Control Release 34(3):233–241

    CAS  Google Scholar 

  100. Erbacher P, Zou S, Bettinger T et al (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15(9):1332–1339

    PubMed  CAS  Google Scholar 

  101. Richardson SCW, Kolbe HVJ, Duncan R (1999) Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 178(2):231–243

    PubMed  CAS  Google Scholar 

  102. Murata J, Ohya Y, Ouchi T (1996) Possibility of application of quaternary chitosan having pendant galactose residues as gene delivery tool. Carbohydr Polym 29(1):69–74

    CAS  Google Scholar 

  103. Murata J, Ohya Y, Ouchi T (1997) Design of quaternary chitosan conjugate having antennary galactose residues as a gene delivery tool. Carbohydr Polym 32(2):105–109

    CAS  Google Scholar 

  104. Thanou M, Florea BI, Geldof M et al (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23:153–159

    PubMed  CAS  Google Scholar 

  105. Kean T, Roth S, Thanou M (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103:643–653

    PubMed  CAS  Google Scholar 

  106. Kim TH, Kim SI, Akaike T et al (2005) Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes. J Control Release 105(3):354–366

    PubMed  CAS  Google Scholar 

  107. Wong K, Sun G, Zhang X et al (2006) PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo. Bioconjug Chem 17:152–158

    PubMed  CAS  Google Scholar 

  108. Jiang H-L, Kim Y-K, Arote R et al (2007) Chitosan-graft-polyethylenimine as a gene carrier. J Control Release 117:273–280

    PubMed  CAS  Google Scholar 

  109. Kim T-H, Jiang H-L, Jere D et al (2007) Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 32(7):726–753

    CAS  Google Scholar 

  110. Nicolet BH, Shinn LA (1939) The action of periodic acid on α-amino alcohols. J Am Chem Soc 61(6):1615

    CAS  Google Scholar 

  111. Vold IMN, Christensen BE (2005) Periodate oxidation of chitosans with different chemical compositions. Carbohydr Res 340(4):679–684

    PubMed  CAS  Google Scholar 

  112. Jiang H, Kwon J, Kim Y et al (2007) Galactosylated chitosan-graft-polyethylenimine as a gene carrier for hepatocyte targeting. Gene Ther 14(19):1389–1398

    PubMed  CAS  Google Scholar 

  113. Jiang H-L, Kwon J-T, Kim E-M et al (2008) Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. J Control Release 131(2):150–157

    PubMed  CAS  Google Scholar 

  114. Lu B, Xu X-D, Zhang X-Z et al (2008) Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery: properties and in vitro transfection studies. Biomacromolecules 9(10):2594–2600

    PubMed  CAS  Google Scholar 

  115. Lou Y-L, Peng Y-S, Chen B-H et al (2009) Poly(ethylene imine)-g-chitosan using EX-810 as a spacer for nonviral gene delivery vectors. J Biomed Mater Res A 88A(4):1058–1068

    CAS  Google Scholar 

  116. Wu Y, Liu C, Zhao X et al (2008) A new biodegradable polymer: PEGylated chitosan-g-PEI possessing a hydroxyl group at the PEG end. J Polym Res 15(3):181–185

    Google Scholar 

  117. Jiang H-L, Kim Y-K, Arote R et al (2009) Mannosylated chitosan-graft-polyethylenimine as a gene carrier for Raw 264.7 cell targeting. Int J Pharm 375(1-2):133–139

    PubMed  CAS  Google Scholar 

  118. Jiang H-L, Xu C-X, Kim Y-K et al (2009) The suppression of lung tumorigenesis by aerosol-delivered folate-chitosan-graft-polyethylenimine/Akt1 shRNA complexes through the Akt signaling pathway. Biomaterials 30(29):5844–5852

    PubMed  CAS  Google Scholar 

  119. Jere D, Jiang H-L, Kim Y-K et al (2009) Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells. Int J Pharm 378(1–2):194–200

    PubMed  CAS  Google Scholar 

  120. Pack DW, Putnam D, Langer R (2000) Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol Bioeng 67(2):217–223

    PubMed  CAS  Google Scholar 

  121. Muzzarelli RAA, Mattioli-Belmonte M, Tietz C et al (1994) Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 15(13):1075–1081

    PubMed  CAS  Google Scholar 

  122. Midoux P, Monsigny M (1999) Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem 10(3):406–411

    PubMed  CAS  Google Scholar 

  123. Kim TH, Ihm JE, Choi YJ et al (2003) Efficient gene delivery by urocanic acid-modified chitosan. J Control Release 93(3):389–402

    PubMed  CAS  Google Scholar 

  124. Jin H, Kim T, Hwang S et al (2006) Aerosol delivery of urocanic acid–modified chitosan/programmed cell death 4 complex regulated apoptosis, cell cycle, and angiogenesis in lungs of K-ras null mice. Mol Cancer Ther 5(4):1041

    PubMed  CAS  Google Scholar 

  125. Jin H, Xu CX, Kim HW et al (2008) Urocanic acid-modified chitosan-mediated PTEN delivery via aerosol suppressed lung tumorigenesis in K-rasLA1 mice. Cancer Gene Ther 15(5):275–283

    PubMed  CAS  Google Scholar 

  126. Bauhuber S, Hozsa C, Breunig M et al (2009) Delivery of nucleic acids via disulfide-based carrier systems. Adv Mater 21(32–33):3286–3306

    PubMed  CAS  Google Scholar 

  127. Bernkop-Schnürch A, Hornof M, Guggi D (2004) Thiolated chitosans. Eur J Pharm Biopharm 57(1):9–17

    PubMed  Google Scholar 

  128. Schmitz T, Bravo-Osuna I, Vauthier C et al (2007) Development and in vitro evaluation of a thiomer-based nanoparticulate gene delivery system. Biomaterials 28(3):524–531

    PubMed  CAS  Google Scholar 

  129. Martien R, Loretz B, Thaler M et al (2007) Chitosan–thioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery? J Biomed Mater Res A 82A(1):1–9

    CAS  Google Scholar 

  130. Park IK, Ihm JE, Park YH et al (2003) Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier. Preparation and physicochemical characterization of GC-graft-PVP/DNA complex (1). J Control Release 86:349–359

    PubMed  CAS  Google Scholar 

  131. Park YK, Park YH, Shin BA et al (2000) Galactosylated chitosan-graft-dextran as hepatocyte-targeting DNA carrier. J Control Release 69(1):97–108

    PubMed  CAS  Google Scholar 

  132. Park IK, Kim TH, Park YH et al (2001) Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. J Control Release 76:349–362

    PubMed  CAS  Google Scholar 

  133. Park IK, Ihm JE, Park YH et al (2003) Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier: In vivo transfection. Arch Pharm Res 27(12):1284–1289

    Google Scholar 

  134. Hashimoto M, Morimoto M, Saimoto H et al (2006) Lactosylated chitosan for DNA delivery into hepatocytes: the effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes. Bioconjug Chem 17(2):309–316

    PubMed  CAS  Google Scholar 

  135. Hashimoto M, Morimoto M, Saimoto H et al (2006) Gene transfer by DNA/mannosylated chitosan complexes into mouse peritoneal macrophages. Biotechnol Lett 28(11):815–821

    PubMed  CAS  Google Scholar 

  136. Forrest ML, Gabrielson N, Pack DW (2005) Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol Bioeng 89(4):416–423

    PubMed  CAS  Google Scholar 

  137. Liu Y, Wenning L, Lynch M et al (2004) New poly(d-glucaramidoamine)s induce DNA nanoparticle formation and efficient gene delivery into mammalian cells. J Am Chem Soc 126(24):7422–7423

    PubMed  CAS  Google Scholar 

  138. Reineke TM, Davis ME (2003) Structural effects of carbohydrate-containing polycations on gene delivery. 1. Carbohydrate size and its distance from charge centers. Bioconjug Chem 14(1):247–254

    PubMed  CAS  Google Scholar 

  139. Reineke TM, Davis ME (2003) Structural effects of carbohydrate-containing polycations on gene delivery. 2. Charge center type. Bioconjug Chem 14(1):255–261

    PubMed  CAS  Google Scholar 

  140. Srinivasachari S, Liu Y, Zhang G et al (2006) Trehalose click polymers inhibit nanoparticle aggregation and promote pDNA delivery in serum. J Am Chem Soc 128(25):8176–8184

    PubMed  CAS  Google Scholar 

  141. Hwang SJ, Bellocq NC, Davis ME (2001) Effects of structure of beta-cyclodextrin-containing polymers on gene delivery. Bioconjug Chem 12(2):280–290

    PubMed  CAS  Google Scholar 

  142. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonuceotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    PubMed  CAS  Google Scholar 

  143. Grosse S, Aron Y, Honore I, Thevenot G, Danel C, Roche A-C, Monsigny M, Fajac I (2004) Lactosylated polyethylenimine for gene transfer into airway epithelial cells: role of the sugar moiety in cell delivery and intracellular trafficking of the complexes. J Gene Med 2004(6):345–356

    Google Scholar 

  144. Liu Y, Wenning L, Lynch M et al (2006) Gene delivery with novel poly(l-tartaramidoamine)s. In: Svenson S (ed) Polymeric drug delivery, volume I: particulate drug carriers. American Chemical Society, Washington DC, pp 217–227

    Google Scholar 

  145. Metzke M, O’Connor N, Maiti S et al (2005) Saccharide–peptide hybrid copolymers as biomaterials. Angew Chem Int Ed 44:6529–6533

    CAS  Google Scholar 

  146. Liu Y, Reineke TM (2006) Poly(glycoamidoamine)s for gene delivery: stability of polyplexes and efficacy with cardiomyoblast cells. Bioconjug Chem 17(1):101–108

    PubMed  Google Scholar 

  147. Prevette LE, Kodger TE, Reineke TM et al (2007) Deciphering the role of hydrogen bonding in enhancing pDNA-polycation interactions. Langmuir 23(19):9773–9784

    PubMed  CAS  Google Scholar 

  148. Lee C-C, Liu Y, Reineke TM (2008) General structure-activity relationship for poly(glycoamidoamine)s: the effect of amine density on cytotoxicity and DNA delivery efficiency. Bioconjug Chem 19(2):428–440

    PubMed  CAS  Google Scholar 

  149. Liu Y, Reineke TM (2007) Poly(glycoamidoamine)s for gene delivery. structural effects on cellular internalization, buffering capacity, and gene expression. Bioconjug Chem 18(1):19–30

    Google Scholar 

  150. Liu Y, Reineke TM (2010) Degradation of poly(glycoamidoamine) DNA delivery vehicles: polyamide hydrolysis at physiological conditions promotes DNA release. Biomacromolecules 11(2):316–325

    Google Scholar 

  151. Taori VP, Liu Y, Reineke TM (2009) DNA delivery in vitro via surface release from multilayer assemblies with poly(glycoamidoamine)s. Acta Biomater 5(3):925–933

    PubMed  CAS  Google Scholar 

  152. Paiva C, Panek A (1996) Biotechnological applications of the disaccharide trehalose. Biotechnol Annu Rev 2:293

    PubMed  CAS  Google Scholar 

  153. Lins RD, Pereira CS, Hünenberger PH (2004) Trehalose-protein interaction in aqueous solution. Proteins 55(1):177–186

    PubMed  CAS  Google Scholar 

  154. Wagner E (2004) Pharm Res 21:8–14

    PubMed  CAS  Google Scholar 

  155. Srinivasachari S, Liu Y, Prevette LE et al (2007) Effects of trehalose click polymer length on pDNA complex stability and delivery efficacy. Biomaterials 28:2885–2898

    PubMed  CAS  Google Scholar 

  156. Prevette LE, Lynch ML, Kizjakina K et al (2008) Correlation of amine number and pDNA binding mechanism for trehalose-based polycations. Langmuir 24(15):8090–8101

    PubMed  CAS  Google Scholar 

  157. Ortiz-Mellet C, Benito JM, Garcia Fernandez JM et al (1998) Cyclodextrin-scaffolded glyco-clusters. Chem Eur J 4(12):2523–2531

    CAS  Google Scholar 

  158. Perez-Balderas F, Ortega-Munoz M, Morales-Sanfrutos J et al (2003) Multivalent neoglycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts. Org Lett 5(11):1951–1954

    PubMed  CAS  Google Scholar 

  159. Garcia-Lopez JJ, Hernandez-Mateo F, Isac-Garcia J et al (1999) Synthesis of per-glycosylated beta-cyclodextrins having enhanced lectin binding affinity. J Org Chem 64(2):522–531

    CAS  Google Scholar 

  160. Gadella A, Defaye J (1991) Selective halogenation at primary postions of cyclomaltooligosaccharides and a synthesis of per-3,6-anhydro cyclomaltooligosaccharides. Angew Chem Int Ed 30:78–80

    Google Scholar 

  161. Andre S, Kaltner H, Furuike T et al (2004) Persubstituted cyclodextrin-based glycoclusters as inhibitors of protein-carbohydrate recognition using purified plant and mammalian lectins and wild-type and lectin-gene-transfected tumor cells as targets. Bioconjug Chem 15(1):87–98

    PubMed  CAS  Google Scholar 

  162. Bellocq NC, Pun SH, Jensen GS et al (2003) Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 14(6):1122–1132

    PubMed  CAS  Google Scholar 

  163. Davis ME, Bellocq NC (2001) Cyclodextrin-containing polymers for gene delivery. J Incl Phenom Macro Chem 44:17–22

    Google Scholar 

  164. Croyle MA, Roessler BJ, Hsu C-P et al (1998) Beta-cyclodextrins enhance adenoviral-mediated gene delivery to the intestine. Pharm Res 15(9):1349–1355

    Google Scholar 

  165. Boger J, Corcoran RJ, Lehn J-M (1978) Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of alpha- and beta-cyclodextrins. Helv Chim Acta 61:2190–2218

    CAS  Google Scholar 

  166. Mocanu G, Vizitiu D, Carpov A (2001) Cyclodextrin polymers. J Bioact Compat Polym 16:315–328

    CAS  Google Scholar 

  167. Zhao Q, Temsamani J, Agrawal S (1995) Use of cyclodextrin and its derivatives as carriers for oligonucleotide delivery. Antisense Res Dev 5(3):185–192

    PubMed  CAS  Google Scholar 

  168. Salem LB, Bosquillon C, Dailey LA et al (2009) Sparing methylation of [beta]-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. J Control Release 136(2):110–116

    PubMed  CAS  Google Scholar 

  169. Yang C, Li H, Goh SH et al (2007) Cationic star polymers consisting of [alpha]-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials 28(21):3245–3254

    PubMed  CAS  Google Scholar 

  170. Cryan S-A (2004) Cell transfection with polycationic cyclodextrin vectors. Eur J Pharm Sci 21(5):625–633

    PubMed  CAS  Google Scholar 

  171. Gonzalez H, Hwang SJ, Davis ME (1999) New class of polymers for the delivery of macromolecular therapeutics. Bioconjug Chem 10(6):1068–1074

    PubMed  CAS  Google Scholar 

  172. Srinivasachari S, Fichter KM, Reineke TM (2008) Polycationic β-cyclodextrin “click clusters”: monodisperse and versatile scaffolds for nucleic acid delivery. J Am Chem Soc 130:4618–4627

    PubMed  CAS  Google Scholar 

  173. Srinivasachari S, Reineke TM (2009) Versatile supramolecular pDNA vehicles via “click polymerization” of [beta]-cyclodextrin with oligoethyleneamines. Biomaterials 30(5):928–938

    PubMed  CAS  Google Scholar 

  174. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005) Sequence-specific knockdown of EWS-EFI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res 65:8984–8992

    PubMed  CAS  Google Scholar 

  175. Pun SH, Davis ME (2002) Development of a nonviral gene delivery vehicle for systemic application. Bioconjug Chem 13:630–639

    PubMed  CAS  Google Scholar 

  176. Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, Davis ME, Brewster M, Janicot M, Janssens B, Floren W, Bakker A (2004) Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modifed, cyclodextrin-based particles. Cancer Biol Ther 3(7):641–650

    PubMed  CAS  Google Scholar 

  177. Heidel JD, Yu ZP, Liu JYC et al (2007) Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci USA 104(14):5715–5721

    PubMed  CAS  Google Scholar 

  178. Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668

    PubMed  CAS  Google Scholar 

  179. Zanta M-A, Boussif O, Adib A, Behr J-P (1997) In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug Chem 8:839–844

    PubMed  CAS  Google Scholar 

  180. Kunath K, von Harpe A, Fischer D et al (2003) Galactose-PEI-DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency. J Control Rel 88(1):159–172

    CAS  Google Scholar 

  181. Nishikawa M, Yamauchi M, Morimoto K et al (2000) Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther 7(7):548–555

    PubMed  CAS  Google Scholar 

  182. Chen C-p, Kim J-s, Liu D et al (2007) Synthetic PEGylated glycoproteins and their utility in gene delivery. Bioconjug Chem 18(2):371–378

    PubMed  Google Scholar 

  183. Rozema DB, Lewis DL, Wakefield DH et al (2007) Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci USA 104(32):12982–12987

    Google Scholar 

  184. Weiss SI, Sieverling N, Niclasen M et al (2006) Uronic acids functionalized polyethyleneimine (PEI)-polyethyleneglycol (PEG)-graft-copolymers as novel synthetic gene carriers. Biomaterials 27(10):2302–2312

    PubMed  CAS  Google Scholar 

  185. Diebold SS, Kursa M, Wagner E, Cotten M, Zenke M (1999) Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells. J Biol Chem 274:19087–19094

    PubMed  CAS  Google Scholar 

  186. Reineke TM (2006) Poly(glycoamidoamine)s: cationic glycopolymers for DNA delivery. J Polym Sci A Polym Chem 44(24):6895–6908

    CAS  Google Scholar 

Download references

Acknowledgments

We apologize to our many colleagues whose elegant work we were unable to discuss directly in this review. The authors acknowledge NIH New Innovator Award. T.M.R. is a fellow of the Alfred P. Sloan Research Foundation and a recipient of the Camille Dreyfus Teacher-Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa M. Reineke .

Editor information

Editors and Affiliations

Additional information

both authors contributed equally to this review.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sizovs, A., McLendon, P.M., Srinivasachari, S., Reineke, T.M. (2010). Carbohydrate Polymers for Nonviral Nucleic Acid Delivery. In: Bielke, W., Erbacher, C. (eds) Nucleic Acid Transfection. Topics in Current Chemistry, vol 296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_68

Download citation

Publish with us

Policies and ethics