Skip to main content

Molecular Workbench for Imaging and Manipulation of Single Macromolecules and Their Complexes with the Scanning Force Microscope

  • Chapter
  • First Online:
Book cover STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 285))

Abstract

The structure and properties of single macromolecules are key to understanding function in biologicalmolecular systems, as well as to developing artificial functional systems. In order to systematicallyinvestigate and control the conformations of single macromolecules and their complexes a “molecularworkbench” has been developed. It consists of an atomically flat, inert solid substrate suchas the basal plane of highly oriented pyrolytic graphite (HOPG), coated with a layer of moleculessuch as alkanes or alkyl chains containing amphiphiles that control the interaction between the substrateand adsorbed macromolecules. A scanning force microscope (SFM) operated in tapping or contactmode is used to both image and manipulate the macromolecules to correlate their structure with mechanicalproperties, and to assemble macromolecular systems that would not form spontaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rivetti C, Guthold M, Bustamante C (1996) J Mol Biol 264:919

    Article  CAS  Google Scholar 

  2. Rabe JP (1998) Curr Opin Coll Int Sci 3:27–31

    Article  CAS  Google Scholar 

  3. Schlüter AD, Rabe JP (2000) Angew Chem 112:860–880

    Article  Google Scholar 

  4. Schlüter AD, Rabe JP (2000) Angew Chem Int Ed 39:864–883

    Article  Google Scholar 

  5. Sheiko SS, Möller M (2001) Chem Rev 101:4099–4123

    Article  CAS  Google Scholar 

  6. Samorí P, Ecker C, Gössl I, De Witte PAJ, Cornelissen JJJM, Metselaar G, Otten MBJ, Rowan AE, Nolte RJM, Rabe JP (2002) Macromolecules 35:5290–5294

    Article  Google Scholar 

  7. Kurth DG, Severin N, Rabe JP (2002) Angew Chem Int Ed 41:3681–3683

    Article  CAS  Google Scholar 

  8. Cacialli F, Wilson JS, Michels JJ, Daniel C, Silva C, Friend RH, Severin N, Samorì P, Rabe JP, O’Connell MJ, Taylor PN, Anderson HL (2002) Nat Mater 1:160–164

    Article  CAS  Google Scholar 

  9. Shu L, Gössl I, Rabe JP, Schlüter AD (2002) Macromol Chem Phys 203:2540–2550

    Article  CAS  Google Scholar 

  10. Gössl I, Shu L, Schlüter AD, Rabe JP (2002) J Am Chem Soc 124:6860–6865

    Article  Google Scholar 

  11. Gössl I, Shu L, Schlüter AD, Rabe JP (2002) Single Mol 3:5–6

    Article  Google Scholar 

  12. Gössl I, Shu L, Schlüter AD, Rabe JP (2002) Single Mol 3:315–316

    Article  Google Scholar 

  13. Otten MBJ, Ecker C, Metselaar GA, Rowan AE, Nolte RJM, Samorì P, Rabe JP (2004) Chem Phys Chem 5:128–130

    Article  CAS  Google Scholar 

  14. Severin N, Rabe JP, Kurth DG (2004) J Am Chem Soc 126:3696–3697

    Article  CAS  Google Scholar 

  15. Ecker C, Severin N, Shu L, Schlüter AD, Rabe JP (2004) Macromolecules 37:2484–2489

    Article  CAS  Google Scholar 

  16. Zhang A, Barner J, Gössl I, Rabe JP, Schlüter AD (2004) Angew Chem 43:5185–5188

    Article  CAS  Google Scholar 

  17. Zhuang W, Ecker C, Metselaar GA, Rowan AE, Nolte RJM, Samorí P, Rabe JP (2005) Macromolecules 38:473–480

    Article  CAS  Google Scholar 

  18. Böttcher C, Schade B, Ecker C, Rabe JP, Shu L, Schlüter AD (2005) Chem Eur J 11:2923–2928

    Article  Google Scholar 

  19. Kasëmi E, Zhuang W, Rabe JP, Fischer K, Schmidt M, Colussi M, Keul H, Ding YI, Cölfen H, Schlüter AD (2006) J Am Chem Soc 128:5091–5099

    Article  Google Scholar 

  20. Severin N, Okhapkin IM, Khokhlov AR, Rabe JP (2006) Nano Lett 6:1018–1022

    Article  CAS  Google Scholar 

  21. Jahnke E, Lieberwirth I, Severin N, Rabe JP, Frauenrath H (2006) Angew Chem 118:5510–5513

    Article  Google Scholar 

  22. Jahnke E, Lieberwirth I, Severin N, Rabe JP, Frauenrath H (2006) Angew Chem Int Ed 45:5383–5386

    Article  CAS  Google Scholar 

  23. Jahnke E, Millerioux A-S, Severin N, Rabe JP, Frauenrath H (2007) Macromol Biosci 7:136–143

    Article  CAS  Google Scholar 

  24. Jahnke E, Severin N, Kreutzkamp P, Rabe JP, Frauenrath H (2008) Adv Mater 20:409–414

    Article  CAS  Google Scholar 

  25. Shu L, Schlüter AD, Ecker C, Severin N, Rabe JP (2001) Angew Chem 113:4802–4805

    Article  Google Scholar 

  26. Shu L, Schlüter AD, Ecker C, Severin N, Rabe JP (2001) Angew Chem Int Ed 40:4666–4669

    Article  CAS  Google Scholar 

  27. Severin N, Barner J, Kalachev A, Rabe JP (2004) Nano Lett 4:577–579

    Article  CAS  Google Scholar 

  28. Severin N, Zhuang W, Ecker C, Kalachev AA, Sokolov IM, Rabe JP (2006) Nano Lett 6:2561–2566

    Article  CAS  Google Scholar 

  29. Barner J, Mallwitz F, Shu L, Schlüter AD, Rabe JP (2003) Angew Chem 115:1976–1979

    Article  Google Scholar 

  30. Barner J, Mallwitz F, Shu L, Schlüter AD, Rabe JP (2003) Angew Chem Int Ed 42:1932–1935

    Article  CAS  Google Scholar 

  31. Al-Hellani R, Barner J, Rabe JP, Schlüter AD (2006) Chem Eur J 12:6542–6551

    Article  Google Scholar 

  32. Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B (1998) Macromolecules 31:807–814

    Article  CAS  Google Scholar 

  33. Kajitani T, Okoshi K, Sakurai S-I, Kumaki J, Yashima E (2006) J Am Chem Soc 128:708–709

    Article  CAS  Google Scholar 

  34. Kumaki J, Kawauchi T, Okoshi K, Kusanagi H, Yashima E (2007) Angew Chem Int Ed 46:5348–5351

    Article  CAS  Google Scholar 

  35. Seebeck FP, Woycechowsky KJ, Zhuang W, Rabe JP, Hilvert D (2006) J Am Chem Soc 128:4516–4517

    Article  CAS  Google Scholar 

  36. Grosberg AY, Khokhlov AR (1994) Statistical Physics of Macromolecules. AIP, Woodbury

    Google Scholar 

  37. Ecker C (2005) Conformations of single polymer chains on surfaces – non-equilibrium, equilibrium and manipulation. Dissertation, Humboldt University Berlin, http://edoc.hu-berlin.de

    Google Scholar 

  38. Samorì P, Francke V, Mangel T, Müllen K, Rabe JP (1998) Opt Mater 9:390–393

    Article  Google Scholar 

  39. Samorì P, Francke V, Müllen K, Rabe JP (1998) Thin Solid Films 336:13–15

    Article  Google Scholar 

  40. Samorì P, Sikharudlidze I, Francke V, Müllen K, Rabe JP (1999) Nanotechnology 10:77–80

    Article  Google Scholar 

  41. Samorì P, Francke V, Müllen K, Rabe JP (1999) Chem Eur J 5:2312–2317

    Article  Google Scholar 

  42. Schnablegger H, Antonietti M, Göltner C, Hartmann J, Cölfen H, Samorì P, Rabe JP, Häger H, Heitz W (1999) J Coll Int Sci 212:24–32

    Article  CAS  Google Scholar 

  43. Stocker W, Schürmann BL, Rabe JP, Förster S, Lindner P, Neubert I, Schlüter A-D (1998) Adv Mater 10:793–797

    Article  CAS  Google Scholar 

  44. Stocker W, Karakaya B, Schürmann BL, Rabe JP, Schlüter A-D (1998) J Am Chem Soc 120:7691–7695

    Article  CAS  Google Scholar 

  45. Hentschke R, Schürmann BL, Rabe JP (1992) J Chem Phys 96:6213–6221

    Article  CAS  Google Scholar 

  46. Hentschke R, Schürmann BL, Rabe JP (1993) J Chem Phys 98:1756–1757

    Article  CAS  Google Scholar 

  47. Jun H, Yi Z, Haibin G, Minqian L, Hartman U (2002) Nano Lett 2:55–57

    Article  Google Scholar 

  48. Rabe JP, Buchholz S (1991) Science 253:424–427

    Article  CAS  Google Scholar 

  49. Cincotti S, Rabe JP (1993) Appl Phys Lett 62:3531–3533

    Article  CAS  Google Scholar 

  50. Askadskaya L, Rabe JP (1992) Phys Rev Lett 69:1395–1398

    Article  CAS  Google Scholar 

  51. Vanden DA Bout, Yip W-T, Hu D, Fu D-K, Swanger TM, Barbara PF (1997) Science 277:1074–1077

    Article  CAS  Google Scholar 

  52. Jäckel F, De Feyter S, Hofkens J, Köhn F, De Schryver FC, Ego C, Grimsdale A, Müllen K (2002) Chem Phys Lett 26:534–540

    Article  Google Scholar 

  53. Hamai C, Tanaka H, Kawai T (1999) J Vac Sci Technol B 17:1313–1316

    Article  CAS  Google Scholar 

  54. Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen P. Rabe .

Editor information

Paolo Samorì

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rabe, J.P. (2008). Molecular Workbench for Imaging and Manipulation of Single Macromolecules and Their Complexes with the Scanning Force Microscope. In: Samorì, P. (eds) STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld. Topics in Current Chemistry, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2008_4

Download citation

Publish with us

Policies and ethics