Computer and Information Sciences – ISCIS 2006

Volume 4263 of the series Lecture Notes in Computer Science pp 174-181

Prediction and Classification for GPCR Sequences Based on Ligand Specific Features

  • Bekir ErgünerAffiliated withBiological Sciences and Bioengineering, Sabanci University
  • , Özgün ErdoğanAffiliated withBiological Sciences and Bioengineering, Sabanci University
  • , Uğur SezermanAffiliated withBiological Sciences and Bioengineering, Sabanci University

* Final gross prices may vary according to local VAT.

Get Access


Functional identification of G-Protein Coupled Receptors (GPCRs) is one of the current focus areas of pharmaceutical research. Although thousands of GPCR sequences are known, many of them are orphan sequences (the activating ligand is unknown). Therefore, classification methods for automated characterization of orphan GPCRs are imperative. In this study, for predicting Level 1 subfamilies of GPCRs, a novel method for obtaining class specific features, based on the existence of activating ligand specific patterns, has been developed and utilized for a majority voting classification. Exploiting the fact that there is a non-promiscuous relationship between the specific binding of GPCRs into their ligands and their functional classification, our method classifies Level 1 subfamilies of GPCRs with a high predictive accuracy between 99% and 87% in a three-fold cross validation test. The method also tells us which motifs are significant for class determination which has important design implications. The presented machine learning approach, bridges the gulf between the excess amount of GPCR sequence data and their poor functional characterization.


G-Protein Coupled Receptors (GPCRs) ligand specificity GPCR sequence