Fine-Grained Named Entity Recognition Using Conditional Random Fields for Question Answering

  • Changki Lee
  • Yi-Gyu Hwang
  • Hyo-Jung Oh
  • Soojong Lim
  • Jeong Heo
  • Chung-Hee Lee
  • Hyeon-Jin Kim
  • Ji-Hyun Wang
  • Myung-Gil Jang
Conference paper

DOI: 10.1007/11880592_49

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4182)
Cite this paper as:
Lee C. et al. (2006) Fine-Grained Named Entity Recognition Using Conditional Random Fields for Question Answering. In: Ng H.T., Leong MK., Kan MY., Ji D. (eds) Information Retrieval Technology. AIRS 2006. Lecture Notes in Computer Science, vol 4182. Springer, Berlin, Heidelberg

Abstract

In many QA systems, fine-grained named entities are extracted by coarse-grained named entity recognizer and fine-grained named entity dictionary. In this paper, we describe a fine-grained Named Entity Recognition using Conditional Random Fields (CRFs) for question answering. We used CRFs to detect boundary of named entities and Maximum Entropy (ME) to classify named entity classes. Using the proposed approach, we could achieve an 83.2% precision, a 74.5% recall, and a 78.6% F1 for 147 fined-grained named entity types. Moreover, we reduced the training time to 27% without loss of performance compared to a baseline model. In the question answering, The QA system with passage retrieval and AIU archived about 26% improvement over QA with passage retrieval. The result demonstrated that our approach is effective for QA.

Keywords

Fine-Grained Named Entity Recognition Conditional Random Fields Question Answering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Changki Lee
    • 1
  • Yi-Gyu Hwang
    • 1
  • Hyo-Jung Oh
    • 1
  • Soojong Lim
    • 1
  • Jeong Heo
    • 1
  • Chung-Hee Lee
    • 1
  • Hyeon-Jin Kim
    • 1
  • Ji-Hyun Wang
    • 1
  • Myung-Gil Jang
    • 1
  1. 1.Electronics and Telecommunications Research Institute (ETRI)DaejeonKorea

Personalised recommendations