Optimal Linear Arrangement of Interval Graphs

  • Johanne Cohen
  • Fedor Fomin
  • Pinar Heggernes
  • Dieter Kratsch
  • Gregory Kucherov
Conference paper

DOI: 10.1007/11821069_24

Volume 4162 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Cohen J., Fomin F., Heggernes P., Kratsch D., Kucherov G. (2006) Optimal Linear Arrangement of Interval Graphs. In: Královič R., Urzyczyn P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg

Abstract

We study the optimal linear arrangement (OLA) problem on interval graphs. Several linear layout problems that are NP-hard on general graphs are solvable in polynomial time on interval graphs. We prove that, quite surprisingly, optimal linear arrangement of interval graphs is NP-hard. The same result holds for permutation graphs. We present a lower bound and a simple and fast 2-approximation algorithm based on any interval model of the input graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Johanne Cohen
    • 1
  • Fedor Fomin
    • 2
  • Pinar Heggernes
    • 2
  • Dieter Kratsch
    • 3
  • Gregory Kucherov
    • 4
  1. 1.LORIAVandoeuvre-lès-Nancy CedexFrance
  2. 2.Department of InformaticsUniversity of BergenBergenNorway
  3. 3.LITAUniversité de MetzMetz Cedex 01France
  4. 4.LIFL/CNRSVilleneuve d’AscqFrance