Structural, Syntactic, and Statistical Pattern Recognition

Volume 4109 of the series Lecture Notes in Computer Science pp 826-834

On Optimizing Kernel-Based Fisher Discriminant Analysis Using Prototype Reduction Schemes

  • Sang-Woon KimAffiliated withDept. of Computer Science and Engineering, Myongji University
  • , B. John OommenAffiliated withSchool of Computer Science, Carleton University

* Final gross prices may vary according to local VAT.

Get Access


Fisher’s Linear Discriminant Analysis (LDA) is a traditional dimensionality reduction method that has been proven to be successful for decades. Numerous variants, such as the Kernel-based Fisher Discriminant Analysis (KFDA) have been proposed to enhance the LDA’s power for nonlinear discriminants. Though effective, the KFDA is computationally expensive, since the complexity increases with the size of the data set. In this paper, we suggest a novel strategy to enhance the computation for an entire family of KFDA’s. Rather than invoke the KFDA for the entire data set, we advocate that the data be first reduced into a smaller representative subset using a Prototype Reduction Scheme (PRS), and that dimensionality reduction be achieved by invoking a KFDA on this reduced data set. In this way data points which are ineffective in the dimension reduction and classification can be eliminated to obtain a significantly reduced kernel matrix, K, without degrading the performance. Our experimental results demonstrate that the proposed mechanism dramatically reduces the computation time without sacrificing the classification accuracy for artificial and real-life data sets.