Region Covariance: A Fast Descriptor for Detection and Classification

  • Oncel Tuzel
  • Fatih Porikli
  • Peter Meer
Conference paper

DOI: 10.1007/11744047_45

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3952)
Cite this paper as:
Tuzel O., Porikli F., Meer P. (2006) Region Covariance: A Fast Descriptor for Detection and Classification. In: Leonardis A., Bischof H., Pinz A. (eds) Computer Vision – ECCV 2006. ECCV 2006. Lecture Notes in Computer Science, vol 3952. Springer, Berlin, Heidelberg

Abstract

We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of d-features, e.g., the three-dimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of interest. We describe a fast method for computation of covariances based on integral images. The idea presented here is more general than the image sums or histograms, which were already published before, and with a series of integral images the covariances are obtained by a few arithmetic operations. Covariance matrices do not lie on Euclidean space, therefore we use a distance metric involving generalized eigenvalues which also follows from the Lie group structure of positive definite matrices. Feature matching is a simple nearest neighbor search under the distance metric and performed extremely rapidly using the integral images. The performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariance matrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Oncel Tuzel
    • 1
    • 3
  • Fatih Porikli
    • 3
  • Peter Meer
    • 1
    • 2
  1. 1.Computer Science DepartmentUSA
  2. 2.Electrical and Computer Engineering DepartmentRutgers UniversityPiscatawayUSA
  3. 3.Mitsubishi Electric Research LaboratoriesCambridgeUSA

Personalised recommendations